
Visual Saliency with Statistical Priors

Jia Li · Yonghong Tian · Tiejun Huang

Abstract Visual saliency is a useful cue to locate the
conspicuous image content. To estimate saliency, many
approaches have been proposed to detect the unique or rare
visual stimuli. However, such bottom-up solutions are often
insufficient since the prior knowledge, which often indicates
a biased selectivity on the input stimuli, is not taken into
account. To solve this problem, this paper presents a novel
approach to estimate image saliency by learning the prior
knowledge. In our approach, the influences of the visual
stimuli and the prior knowledge are jointly incorporated into
a Bayesian framework. In this framework, the bottom-up
saliency is calculated to pop-out the visual subsets that are
probably salient, while the prior knowledge is used to recover
the wrongly suppressed targets and inhibit the improperly
popped-out distractors. Compared with existing approaches,
the prior knowledge used in our approach, including the
foreground prior and the correlation prior, is statistically
learned from 9.6 million images in an unsupervised manner.
Experimental results on two public benchmarks show that
such statistical priors are effective to modulate the bottom-
up saliency to achieve impressive improvements when com-
pared with 10 state-of-the-art methods.
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1 Introduction

Visual saliency estimation, which aims to detect the impor-
tant content in images and videos, has become a popular
research topic in recent years. In most cases, the salient stim-
uli have the capability to easily capture human visual atten-
tion and thus become interesting (Elazary and Itti 2008). By
focusing on the salient content in images and videos, appli-
cations such as video retargeting, content-based advertising
and image/video retrieval can generate results that can better
meet human perception.

In existing studies on visual saliency estimation, rarity is
a frequently-used criterion to quantify saliency. Usually, the
unique or rare visual subsets are supposed to be salient. For
example, Itti et al. (1998) proposed a classical framework to
estimate visual saliency by calculating the center-surround
contrasts. Visual signals might become salient only if they
could differ from their neighbors in multiple scales. Harel
et al. (2006) represented an image as a graph and adopted a
random walker to detect the salient signals that were related
to the less visited nodes. In (Riche et al. 2012), saliency was
estimated by detecting locally contrasted and globally rare
features. Generally, these approaches can generate promis-
ing results but may have a severe problem since saliency is
not equivalent to rarity. Although it is often safe to assume
that salient signals are rare, the opposite assumption will
not always hold since some background distractors may also
become rare, either locally or globally (as shown in Fig. 1a,
b, some distractors are also rare and will be popped-out in
the competition). Moreover, existing computing methodolo-
gies on rarity still have some drawbacks (e.g., computing
local contrasts in improper scales) and some salient targets
may be wrongly suppressed (as shown in Fig. 1c, d, only the
borders of the large salient targets can pop-out while their
inner smooth parts are wrongly suppressed). Therefore, one



Fig. 1 Examples of wrongly suppressed targets and improperly
popped-out distractors. Images in the first row are selected from the
benchmark proposed by Li et al. (2013). The second row presents the
fixation density maps from 21 subjects and the third row illustrates
the saliency maps calculated using the classical model proposed by Itti
et al. (1998). a–b background distractors may be also rare and will
be popped-out in the unbiased competition; c–d only the borders of
the large salient targets can pop-out while their inner smooth parts are
wrongly suppressed

of the most important problem in visual saliency estimation
is to recover the wrongly suppressed targets and inhibit the
improperly popped-out distractors.

To solve this problem, incorporating the prior knowledge
could probably be a feasible solution. Actually, the prior
knowledge can bias the competition between the input visual
signals by favoring a specific category of visual stimuli (Frith
2005). In this process, such biased selectivity can help to
pop-out the real targets and suppress the real distractors. For
example, Cerf et al. (2008) assigned high saliency values to
human faces, while Meur et al. (2006) proposed that visual
stimuli around image centers should be emphasized. Beyond

these predefined priors, some supervised approaches such as
(Li et al. 2010; Zhao and Koch 2012) tried to learn the feature
prior, while (Torralba et al. 2006; Chikkerur et al. 2010) pro-
posed to learn the task-dependent prior that can be integrated
into the Bayesian framework to pop-out the objects corre-
sponding to specific search or recognition tasks. However,
the priors learned from a limited number of images usually
have the over-fitting risk, while the task related priors prevent
their further usage in generic scenarios. To sum up, effective
and robust prior knowledge is inevitable for visual saliency
estimation.

Following this idea, we propose a novel Bayesian approach
for image saliency estimation by jointly capturing the influ-
ences of the input visual stimuli and the prior knowledge
unsupervisedly learned from millions of images. In particu-
lar, we focus on estimating saliency under free-viewing con-
ditions and the learned prior knowledge is task-independent.
As shown in Fig. 2, our approach first calculates the bottom-
up saliency by only considering the unbiased competitions
between visual signals. After that, the bottom-up saliency
is modulated by the prior knowledge statistically learned
from millions of images. In particular, the foreground prior
is learned by inferring the spatial distributions of all kinds
of image patches, and can be used to identify whether an
image patch belongs to foreground. The correlation prior is
learned by mining the patch co-occurrence characteristics,
which can be used to model the mutual influence between
different image patches. These two priors are then used to
bias the competition between visual signals by recovering
the wrongly suppressed targets and inhibiting the improperly
popped-out distractors. Finally, the estimated saliency maps
can be improved by simultaneously using the cues from the
visual signal and the prior knowledge.

Fig. 2 The system framework of our approach. In this framework,
the bottom-up saliency is first calculated using any existing stimulus-
driven saliency model. After that, the top-down component will modu-
late the bottom-up saliency with the priors that are statistically learned
from massive unlabeled images. In this process, the foreground prior is
learned to evaluate whether a patch belongs to foreground, and back-

ground patches will be suppressed. Meanwhile, the correlation prior is
learned to reveal the correlations between patches. Using the correla-
tion prior, patches which have strong latent correlations with bottom-up
salient patches are selectively enhanced, while irrelevant patches will
be ignored. Finally, the saliency maps obtained from foreground and
correlation priors are combined to generate the final saliency map



In the experiments, we compare our approach with ten
state-of-the-art approaches, including (Itti et al. 1998; Bruce
and Tsotsos 2006; Harel et al. 2006; Hou and Zhang 2007,
2008; Zhang et al. 2008; Achanta et al. 2009; Wang et al.
2010; Goferman et al. 2010; Riche et al. 2012). Experimen-
tal results on two public image benchmarks show that the
learned statistical priors can effectively modulate the bottom-
up saliency to better predict human fixations. Consequently,
our approach achieves impressive improvements and demon-
strates several advantages in utilizing the prior knowledge.
Our main contributions are summarized as follows:

1. Two kinds of prior knowledge, including the foreground
prior and the correlation prior, are presented for estimat-
ing saliency in the free-viewing scenario. By modeling
both the spatial distributions and correlations of various
visual stimuli, such priors can well adapt to various scenes
in recovering the wrongly suppressed targets and inhibit-
ing the improperly popped-out distractors.

2. We propose an effective learning algorithm to learn the
prior knowledge from millions of images in an unsuper-
vised manner. Such prior knowledge, which is learned
from huge amounts of images, is statistically significant
and avoids the over-fitting risk.

3. A Bayesian framework is proposed to jointly capture the
influences of the visual stimuli and the prior knowledge
for visual saliency estimation. Experimental results show
that this framework is effective to modulate any kinds of
bottom-up saliency to better predict human fixations.

The rest of this paper is organized as follows: Section 2
reviews the related work and Sect. 3 states the problems that
should be solved. In Sect. 4, we describe the details of our
approach in visual saliency estimation. Experimental results
are presented in Sect. 5 and the paper is concluded in Sect. 6.

2 Related Work

In the past decades, many approaches have been proposed
to estimate image/video saliency, segment salient objects,
explore the neurobiological evidences, etc. In this survey, we
will mainly focus on the computational approaches on image
saliency estimation.

2.1 The Bottom-Up Approaches

In the bottom-up approaches, visual signals will compete
fairly to pop-out. Inspired by this idea, existing bottom-up
approaches often aim to detect the unique or rare visual sub-
sets which are supposed to be the winner in the unbiased
competition. Therefore, the main difference between these
approaches lies in the way to quantify such visual rarity.

The most popular way to quantify rarity is to calculate the
difference between various visual subsets. For example, Itti
et al. (1998) proposed a classical framework in which high
saliency values were assigned to the visual subsets with high
center-surround contrasts. Riche et al. (2012) assumed that
locally contrasted and globally rare features were salient and
adopted a sequential framework to extract various features
and estimate visual saliency. In (Achanta et al. 2009), image
saliency was determined by the difference between Gaussian
blurred features and mean image features, while Vikram et
al. (2012) estimated image saliency by integrating the local
differences over random rectangular regions. Generally, the
difference-based approach can pop-out most of the rare tar-
gets (i.e., the recall can be relatively high). However, the
simple difference calculation often fails to recognize the dis-
tractors which may be also rare (i.e., the precision may be
low).

Instead of calculating the difference between various
visual stimuli, some approaches adopted intuitive defini-
tions on rarity. For instance, Lu et al. (2011) proposed that
regions on the convex side of curved boundaries were prob-
ably salient and detected salient targets by using such con-
cavity contexts. In (Harel et al. 2006), an image was first
represented by a weighted graph and a random walker was
then adopted to pop-out the visual subsets corresponding to
the less visited nodes. Hou and Zhang (2007) proposed an
approach to estimate visual saliency by calculating the spec-
tral residuals using the Fourier transform. Visual irregulari-
ties were first detected in the transform domain, which were
then transformed back to the spatial domain to locate the
salient targets.

Generally speaking, the bottom-up approaches can work
well in many cases. As mentioned above, however, visual
rarity is not equivalent to visual saliency. Some background
distractors may be wrongly popped-out and some foreground
targets may be wrongly suppressed when using improper fea-
tures, scales and computing methods to quantify visual rarity.
If the input visual signals are fairly treated without any bias,
these fake targets (i.e., the wrongly popped-out distractors)
and false distractors (i.e., the wrongly suppressed targets)
will be inevitable in the estimated saliency maps.

2.2 The Knowledge-Based Approaches

To solve the problems in existing bottom-up approaches,
incorporating the prior knowledge into visual saliency esti-
mation could probably be a feasible solution. Actually, the
prior knowledge can often bias the competition between
visual signals by favoring a specific category of visual stim-
uli (Frith 2005). According to the ways that the prior knowl-
edge is obtained, existing knowledge-based approaches can
be divided into three groups: ad-hoc group, learning-based
group and statistical group.



The approaches in the ad-hoc group aim to bias the compe-
tition between various visual signals by using the predefined
prior knowledge. For instance, Cerf et al. (2008) and Gofer-
man et al. (2010) assumed that faces were inherently salient.
In their approaches, human faces were detected with the face
detection algorithms and high saliency values were directly
assigned to the related visual signals. By observing that sub-
jects often stared at the center of the scene to start the eye-
tracking experiments, Meur et al. (2006) adopted such center-
bias as the predefined prior to enhance patches near to image
centers with an anisotropic Gaussian. Some approaches such
as (Cheng et al. 2011; Aziz and Mertsching 2008; Liu et al.
2007a) proposed that saliency values should be assigned to
objects, instead of spatial locations. The latent assumption
was that the input visual signals were inherently correlated
and such signals should be treated as a whole in the competi-
tion. Consequently, the manually fine-tuned parameters were
used as the prior knowledge to group different visual signals
into objects (or super-pixels). Often, these approaches can
work well on simple images. However, they may have diffi-
culties to process images with rich contents since it is usually
difficult to obtain the required cues from the complex scenes
(e.g., segment all the objects with one set of predefined para-
meters, detecting the side faces, etc.).

Instead of using the predefined priors, the approaches in
the learning-based group aim to learn the prior knowledge
in a supervised manner. They often try to learn the optimal
“stimuli-saliency” mapping models, which can emphasize
the effective feature channels (e.g., with high weights) and
inhibit the useless feature channels (e.g., with low weights).
For instance, Kienzle et al. (2007) adopted a support vec-
tor machine (SVM) to model the correlations between high-
dimensional features and visual saliency values, while Judd
et al. (2009) also utilized the SVM with linear kernels to
optimize the mapping from low-level, mid-level and high-
level features to visual saliency. Similarly, Zhao and Koch
(2011) and Li et al. (2010) proposed to model such “stimuli-
saliency” mapping by using linear functions which were opti-
mized by least square algorithm or quadratic programming.
In (Liu et al. 2007b), several novel features were proposed
and the conditional random field (CRF) was adopted to com-
bine these features for salient object detection. In (Naval-
pakkam and Itti 2007), the weights of various visual feature
channels were optimized by maximizing the signal-noise-
ratio. Instead of optimizing the weights for various feature
channels, Peters and Itti (2007) tried to learn a direct mapping
from the global feature matrix to the fixation density map.
Zhao and Koch (2012) first established a feature pool with
88 features and the AdaBoost algorithm was then adopted
to train a set of weak classifiers by iteratively training weak
classifier, estimating classifier weight and updating sample
weights. These weak classifiers were then combined to build
the saliency model. Beyond the models that mainly focus on

estimating saliency in free-viewing conditions, Torralba et
al. (2006) proposed a Bayesian approach to estimate task-
dependent saliency. In their approach, the global scene con-
text served as a cue to reveal the probable locations to search
specific targets (e.g., searching painting, mug and people). By
learning the relationship between global features and target
locations, the bottom-up saliency can be modulated to adapt
to various search tasks. Similarly, Chikkerur et al. (2010)
learned both the feature and location priors about specific
object categories. These priors were then integrated with the
bottom-up factors using a Bayesian inference framework to
pop-out the objects corresponding to specific search or recog-
nition tasks.

Generally speaking, these learning-based approaches can
demonstrate promising performance on small benchmarks.
The parameters trained and fine-tuned on part of the bench-
mark can usually achieve high performance on the rest
of the benchmark. However, the most severe drawback of
these approaches is that they require the supervised learn-
ing process. In this process, all the training data should be
labeled with eye tracking devices or manual labeling activi-
ties, which is really time-consuming. Consequently, existing
benchmarks are usually very small (with only hundreds or
thousands of images), which is far from sufficient to cover
all possible cases. Therefore, the trained models often have
the over-fitting risk. For instance, the model trained on a lim-
ited number of images can bias to specific feature channels
and locations to generate promising results on similar testing
scenes, but such model may fail when encountering unknown
scenes. That also hampers the further usage of these learning-
based models in actual applications.

To avoid the over-fitting risk, the approaches in the
statistical group try to learn the prior knowledge from
massive images in an unsupervised manner. For these
approaches, a common process is to train a set of visual
words (or namely the independent components, basis func-
tions, sparse codes, dictionaries, etc.) from massive image
statistics (Bruce and Tsotsos 2006; Hou and Zhang 2008;
Zhang et al. 2008; Wang et al. 2010; Borji and Itti 2012;
Yang and Yang 2012; Sun et al. 2012). Image patches are
then projected to these visual words to get more com-
pact visual representations. By representing image patches
with the projection coefficients, Bruce and Tsotsos (2006)
estimated visual saliency by maximizing the information
sampled from a scene, while Hou and Zhang (2008) pro-
posed the incremental coding length (ICL), which was
used as the criterion to redistribute the limited energy
(saliency) amongst features. Borji and Itti (2012) proposed
an approach to estimate visual saliency by using the pro-
jection coefficients to quantify the local center-surround
difference and the global rarity. In (Wang et al. 2010),
a set of sub-band feature maps were first extracted using
the learned sparse codes. These feature maps were then



represented as fully-connected graphs, on which random
walkers were used and visual saliency was defined by
the average information transmitted during the random
walk. Different from these approaches, Yang and Yang
(2012) proposed a novel algorithm for learning the visual
words. In their approach, the visual words were treated as
the latent variables of CRF. By jointly learning the CRF
and the dictionary, the overall performance was greatly
improved and the estimated saliency maps were much
clear.

To sum up, the latent assumption in these statistical
approaches is that foreground targets and background dis-
tractors are more distinguishable in the new subspace formed
by the learned visual words. These visual words, which are
often learned unsupervisedly from thousands of images, can
be viewed as some kinds of prior knowledge. However, these
approaches still have the same problem as the bottom-up
approaches since the visual subsets are also equally treated
in the new subspace and no bias is applied. By projecting
the image patches onto the new subspace, the problem of
wrongly suppressing targets and improperly popping-out dis-
tractors can be mitigated but remains unsolved. Moreover,
these statistical approaches also failed to consider the influ-
ence of the latent correlations between various visual stim-
uli. Actually, inherently correlated stimuli can usually excite
each other to become salient, while irrelevant stimuli may
compete to inhibit each other. Without modeling the prior
knowledge on such latent correlations, it is often difficult to
perfectly process the scenes with massive objects. Therefore,
it is necessary to unsupervisedly learn the biased prior knowl-
edge such as the foreground prior and the correlation prior to
adaptively process different visual stimuli when considering
their mutual correlations.

3 Problem Statement

To estimate visual saliency, one of the most important prob-
lem is to simultaneously model the influences of the visual
stimuli and the prior knowledge. In human vision system,
various visual stimuli will compete to become salient, while
the prior knowledge may bias the competition in two ways:
recovering the foreground targets that are wrongly sup-
pressed and inhibiting the background distractors that are
improperly popped-out. Following this idea, we propose a
Bayesian framework to jointly capture the influences of the
visual stimuli and the prior knowledge. In this framework,
we focus on modulating the visual saliency acquired through
bottom-up competition with various top-down priors. Let sn

be the event that an image patch Bn (e.g., 8×8 macro blocks)
pops-out after the bottom-up competition and rn be the event
that Bn becomes salient after the top-down modulation, we
can assume that:

Fig. 3 Problem statement. Note that sn is the event that Bn pops-out
after the bottom-up competition and rn is the event that Bn becomes
salient after the top-down modulation. Here we incorporate the top-
down priors to solve two problems: a whether Bn can become salient
after the top-down modulation when only considering its bottom-up
saliency; b whether Bn can become salient after the top-down modula-
tion when only considering the bottom-up saliency of Bm

P(rn) =
M∑

m=1

P(sm)P(rn|sm)

= P(sn)P(rn|sn) +
M∑

m �=n

P(sm)P(rn|sm).

(1)

where M is the total number of patches in the same image.
From (1), we can see that the problem of estimating P(rn)

can be divided into three sub-problems:

1. Estimating P(sn), which is the probability that Bn pops-
out in the bottom-up competition between the input visual
stimuli;

2. Estimating P(rn|sn), which is the probability that Bn

becomes salient after the top-down modulation if it
already pops-out in the bottom-up competition (as shown
in Fig. 3a); and

3. Estimating P(rn|sm), which is the probability that Bn

becomes salient after the top-down modulation if another
patch Bm pops-out in the bottom-up competition (as
shown in Fig. 3b).

Among all these three sub-problems, the first one has been
well studied in the past decades and there already exist many
feasible solutions to this sub-problem (e.g., Itti et al. (1998);
Bruce and Tsotsos (2006); Harel et al. (2006); Hou and Zhang
(2007); Parikh et al. (2008)). Here we denote the estimated
bottom-up saliency as Sb(n) for a patch Bn and thus can
assume:

P(sn) ∝ Sb(n). (2)

In the following study, we will mainly focus on the last
two sub-problems and the main difficulty is to modulate
bottom-up saliency using various kinds of prior knowl-
edge. In this process, only the appearances and locations
of the patches are available.Therefore, the prior knowledge



related to visual attributes and positional information could
probably be an effective key to solve the proposed two
sub-problems.

4 Saliency with Statistical Priors

In this section, we will address the proposed two sub-
problems and modulate the bottom-up saliency with the
learned top-down priors. First, we investigate what kinds of
prior knowledge should be learned. After that, we describe
the details on how to learn the required prior knowledge
through massive image statistics. Finally, we present how
to estimate visual saliency using the learned priors.

4.1 What to Learn?

Generally speaking, there are numerous kinds of prior knowl-
edge and it is impossible to learn all of them. According to the
problems stated in Fig. 3, we have to learn the prior knowl-
edge that demonstrates a biased selectivity on the visual
attributes and positional information, which are the only cues
in conducting the top-down modulation. Therefore, we will
mainly focus on two kinds of prior knowledge, including the
foreground prior and the correlation prior. The foreground
prior aims to identify whether an image patch belongs to fore-
ground using its visual attributes and positional information.
This prior knowledge can be helpful to estimate P(rn|sn).
The correlation prior aims to model the mutual correlations
between image patches. This prior knowledge can be help-
ful to estimate P(rn|sm) by taking the correlation between
image patches into account. With these two kinds of prior
knowledge, bottom-up saliency can be modulated to recover
the wrongly suppressed targets and inhibit the improperly
popped-out distractors.

In order to learn such prior knowledge and ensure the
learned priors are statistically significant, we collect 9.6 mil-
lion images that are randomly crawled from Flicker. Each
image is resized to have a max side length of no more than
320 pixels while keeping the width-to-height ratio. Each
image is then divided into a set of non-overlapping 8 × 8
patches, and each patch is characterized by its preattentive
features (Wolfe 2005). That is, we represent a pixel υ in
an image patch Bn by its intensity Iυ , red-green opponency
RGυ , blue-yellow opponency BYυ and four orientation fea-
tures {Oθ

υ}, θ ∈ {0◦, 45◦, 90◦, 135◦}. The intensity and color
opponencies can be calculated as:

Iυ = rυ + gυ + bυ

3
,

RGυ = rυ − gυ

max(rυ, gυ, bυ)
,

BYυ = bυ − min(rυ, gυ)

max(rυ, gυ, bυ)
,

(3)

where rυ, gυ, bυ are the red, green and blue components
for pixel υ, respectively. Here the red-green and blue-yellow
opponencies are calculated as in (Walther and Koch 2006),
which will be set to zero if max(rυ, gυ, bυ) < 0.1 to avoid
large fluctuations at low luminance.

The orientation feature Oθ
υ can be calculated by convolv-

ing Iυ with Gabor filters:

Oθ
υ =‖ Iυ ∗ G0(θ) ‖ + ‖ Iυ ∗ Gπ/2(θ) ‖ , (4)

where G0(θ) and Gπ/2(θ) are two Gabor filters oriented at
θ with phase 0 and π/2, respectively. After calculating these
features for all pixels in Bn , we further quantize each feature
into four bins to acquire seven histograms from an image
patchBn . Finally, each patch is characterized by a feature vec-
tor with 7×4=28 components with the same dynamic range
of [0,1].

From 9.6 million images, we can obtain billions of image
patches (i.e., billions of 28d feature vectors). To efficiently
learn prior knowledge from such a huge number of image
patches, we have to further reduce the feature dimension to
obtain a more compact patch representation. Toward this end,
a feasible solution could be generating a set of visual words
by performing k-means clustering on all the image patches
and represent each patch with the nearest visual word. How-
ever, it is very difficult to directly perform the k-means clus-
tering on billions of image patches due to the limitation of
computational resource. Therefore, we use the affinity propa-
gation algorithm proposed in (Frey and Dueck 2007) to select
a set of representative patches (i.e., exemplars) from each
image. In this process, the number of exemplars is automati-
cally determined according to the complexity of image con-
tent. Since such exemplars are much fewer than the original
patches, we can perform k-means clustering on their feature
vectors to form a vocabulary of Nw visual words, denoted
as {wi }Nw

i=1 (in the experiments, we will show the influence
of Nw). With these visual words, each patch can be quan-
tized to the nearest visual word using the Euclidian distance
measure. Finally, we can represent a patch Bn with only one
integer label ln ∈ {1, ..., Nw}.

4.2 Learning the Foreground Prior

To calculate the foreground prior, we simply count the times
that a visual word wi appears at any probable locations. After
that, we can get Nw distribution maps {Di }Nw

i=1, which are
then normalized to let the location with the highest frequency
corresponds to 1. Some representative visual words and their
distribution maps are shown in Fig. 4.

From Fig. 4, we can see that many visual words demon-
strate center-biased distributions, while several visual words
distribute around image edges. Since people often snap pho-
tos by intentionally placing the targets near to image centers
(i.e., the photographer bias in Tseng et al. (2009)), foreground



Fig. 4 Some representative visual words and their distribution maps
learned from millions of images. Many maps demonstrate the strong
center-bias property, while several maps are obviously edge-biased.
These maps may contain cues to evaluate whether a patch belongs
to foreground and thus can be used as the prior knowledge in visual
saliency estimation

Fig. 5 The distribution maps of typical background patches. Salient
targets are often intentionally placed near to image centers by photog-
raphers while background patches often distribute around the edges.
These three visual words and distribution maps correspond to the last
three samples from the first row in Fig. 4

targets often appear around image centers while background
distractors usually appear near to image edges (as shown in
Fig. 5). Therefore, we can safely assume that visual words
have higher probabilities to appear in the foreground than
in the background if they distribute around image centers.

Following this assumption, we can use the distribution
maps as the foreground criterion. As shown in Fig. 6a, we
divide a distribution map Di into two regions with equivalent
area and use Ωi to quantify its center-bias property as the
percentage of energy in the “center” region. From Fig. 6b,
we can see that the quantified center-bias properties are high

on many distribution maps, while some maps are obviously
edge-biased. Thus the corresponding patches can be treated
as distractors and should be suppressed.

Given the quantified center-bias property of each visual
word, we can infer the probability that an image patch
belongs to foreground using its visual attributes and posi-
tional information. Suppose that Bn is classified to the visual
word wln and let fn be the event that Bn is a foreground patch,
we can estimate P(fn) as:

P(fn) ∝ [Ωln ≥ 0.5]I · Dln (n), (5)

where [Ωln ≥ 0.5]I equals to 1 if Ωln ≥ 0.5 and 0 other-
wise. Dln (n) indicates the frequency that the visual word wln
appears at the location of Bn . From (5), we can see that the
probability that Bn belongs to foreground could become high
if: (1) wln distributes around image centers (i.e., Ωln ≥ 0.5)
and thus has a higher probability to appear in the foreground
than in the background; and (2) Bn appears at recurring loca-
tions that a probable foreground visual word wln can be fre-
quently observed in millions of images.

4.3 Learning the Correlation Prior

The objective of learning the correlation prior is to model
the mutual influence between any two patches. Generally
speaking, there exist two kinds of typical mutual influences:
1) if two image patches Bm and Bn are correlated, they will
probably excite each other. Once we observe one patch, we
may expect the other one; 2) on the contrary, irrelevant image
patches will compete to inhibit each other. Here we use Υ mn

to quantify the correlation strength between two visual words
wm and wn . In calculating Υ mn , two visual words that fre-
quently co-occur in the same images may be tightly corre-
lated. That is, if we can observe one visual word, we can
expect another one with a high probability. Moreover, the
probability of expecting wn when wm is observed should be
different from that of expecting wm when wn is observed.
For example, many images may contain a common visual
word wn . When some other visual words in these images are
observed, wn can be expected with high probabilities. How-
ever, we can hardly expect other specific visual words when
wn is observed.

Following this idea, we can estimate Υ mn using massive
image statistics. First, we count the frequency Fn which indi-
cates the total times that the visual word wn appears in all
the training images. Meanwhile, we also count the frequency
Fmn which represents the total times that two visual words
wm and wn appear in the same images (note that Fnn=Fn).
After that, we can calculate Υ mn as:

Υ mn = Fmn

Fn
. (6)



Fig. 6 Quantified center-biased
property. a a distribution map is
divided into two regions with
equivalent area and the
center-bias property Ωi is
quantified as the percentage of
energy in the “center” area. b
The histogram of the quantified
center-bias properties {Ωi }Nw

i=1
of the distribution maps.
Without loss of generality, we
use 32 and 1,024 visual words

Fig. 7 The histogram of quantified correlations {Υ mn} between
Nw=1024 visual words. We can see that most visual words demonstrate
weak correlations, while some visual words can demonstrate strong
co-occurrence properties even on millions of images

From (6), we can see that Υ mn is unequal to Υ nm and a
higher co-occurrence frequency will lead to a stronger cor-
relation. Figure 7 shows the histogram of such quantified
correlation strength between 1024 visual words. We can see
that most visual words have weak correlations, while some
visual words demonstrate strong co-occurrence properties
even in millions of images.

Given the quantified correlation strength between visual
words, we can infer the probability that one image patch
is tightly correlated with another patch using their visual
attributes and positional information. Suppose that Bm and
Bn are classified to visual words wlm and wln and let omn be
the event that Bn is correlated to Bm , we can estimate P(omn)

as:

P(omn) ∝ Υ lmln · N (dmn; 0, σc), (7)

where N is the Gaussian distribution and σc is empirically
set to 0.3 in this study. dmn is the distance between Bm and
Bn , which is normalized by the distance from image corner
to image center. The Gaussian term is important to ensure
that only the correlations between the patches in a local area
are considered to increase the computational efficiency. From
(7), we can see that the probability that Bn is correlated to

Bm will be high if: (1) wlm and wln frequently co-occur in
millions of images; and (2) Bm and Bn are near to each other.

4.4 Visual Saliency with Statistical Priors

Given the learned foreground prior and correlation prior, we
can now turn to the two sub-problems proposed above: how
to estimate P(rn|sn) and P(rn|sm)?

To estimate P(rn|sn), we have to first infer the foreground
prior P(fn) using (5) to see whether Bn is a foreground patch.
With the foreground prior, we can rewrite P(rn|sn) as:

P(rn|sn) = P(fn)P(rn|sn, fn) + P(fn)P(rn|sn, fn). (8)

From (8), we can see that there are two probable combina-
tions of events sn and fn , including:

– sn and fn : Bn is a target that is correctly popped-out by
the bottom-up model.

– sn and fn : Bn is probably a distractor that is improperly
popped-out by the bottom-up model.

When modulating the bottom-up saliency with the fore-
ground prior, we can maintain the correctly popped-out tar-
gets and suppress the improperly popped-out distractors by
setting:

P(rn|sn, fn) ≈ 1, P(rn|sn, fn) = e−αb . (9)

where αb ≥0 is a predefined constant to fuse the conflict
predictions made by the bottom-up saliency model and the
foreground prior. Smaller e−αb indicates the foreground prior
is more reliable (we will show the influence of αb in the
experiment). By incorporating (9) into (8), we can estimate
P(rn|sn) as:

P(rn|sn) = e−αb + (1 − e−αb )P(fn), (10)

where the foreground prior P(fn) can be estimated using (5).
From (10), we can see that the bottom-up saliency can be
selectively modulated by the foreground prior. In this process,
the real targets, which are predicted as salient by both the



Fig. 8 The correlation prior can help to recover the wrongly suppressed
targets and to pop-out large salient target as a whole. Given an image
(a), its bottom-up saliency map sometimes only pops-out the borders
of the large salient target, while the inner smooth parts are ignored.
For example, the saliency map in (b) is calculated using the model in
(Itti et al. 1998), which mainly pops-out the head and tail of the cow.
To recover the wrongly suppressed targets (e.g., the inner smooth parts
of the cow), we first estimate the correlation strength between visual

words. The map in (c) shows the correlation strength Υ mn between the
patch marked in red and all the other patches. To increase the compu-
tational efficiency, we only consider the correlations between nearby
patches (e.g., patches in the red circle controlled by a Gaussian term).
Finally, the border patch marked with red, which successfully pops-out
in the bottom-up competition, will help to recover the wrongly sup-
pressed targets (i.e., large P(sm) and P(rn |sm) will lead to large P(rn))

bottom-up saliency model and foreground prior, will become
salient. On the contrary, the distractors, which pop-out in the
bottom-up competition, will be suppressed if the foreground
prior classifies them as distractors.

To estimate P(rn|sm), we have to first infer the correlation
prior P(omn) to find whether Bn is tightly correlated with Bm .
Inspired by this idea, we have:

P(rn|sm) = P(omn)P(rn|sm, omn)

+ P(omn)P(rn|sm, omn).
(11)

From (11), we can also find two probable combinations of
events sn and omn , including:

– sm and omn : Bn is tightly correlated with a patch that pops-
out in the bottom-up competition. In this case, Bn will be
excited by Bm .

– sm and omn : Bn is irrelevant with a patch that pops-out in
the bottom-up competition. In this case, Bn will be inhib-
ited by Bm .

When modulating the bottom-up saliency with the correla-
tion prior, two tightly correlated patches will excite each other
while irrelevant patches will inhibit each other by setting:

P(rn|sm, omn) ≈ 1, P(rn|sm, omn) ≈ 0. (12)

By incorporating (12) into (11), we can thus estimate
P(rn|sm) as:

P(rn|sm) = P(omn), (13)

where the correlation prior P(omn) can be estimated using
(7). From (13), we can see that the wrongly suppressed tar-
gets may become salient after the top-down modulation if it is
tightly correlated with the targets that pop-out in the bottom-
up competition. As shown in Fig. 8, a patch that pops-out in
the bottom-up competition (e.g., the head and tail of the cow)

can then selectively enhance nearby patches with strong cor-
relations (e.g., the body of the cow) in the following top-down
modulation. In this manner, we can pop-out the salient target
as a whole, especially for those objects with large smooth
regions.

After estimating P(rn|sn) and P(rn|sm), the saliency
value of Bn after the top-down modulation, denoted as
Sr (n) ∝ P(rn), can thus be calculated by incorporating (2),
(10) and (13) into (1):

Sr (n) ∝ Sb(n) · (e−αb + (1 − e−αb )P(fn))

+
M∑

m �=n

Sb(m) · P(omn),
(14)

where P(fn) and P(omn) are foreground and correlation pri-
ors that can be derived using (5) and (7), respectively. To facil-
itate the computation of Sr (n), we first obtain two saliency
maps using the first and the second terms in (14), respec-
tively. These two saliency maps are then normalized into the
same range of [0,1] and fused with equal weights.

Given a testing image, its saliency map can be easily esti-
mated through four major steps (as shown in Fig. 2):

1. Resize the image to have a max side length of no more than
320 pixels and divided the image into non-overlapping
8×8 patches;

2. Use any existing bottom-up model to estimate a bottom-up
saliency value for each patch;

3. Estimate the foreground and correlation priors using (5)
and (7) and then use them to generate the modulated
saliency map using (14); and

4. Convolve the saliency map with a disk filter (with the
radius of 3) to fill in the “holes” generated by apply-
ing inconsistent foreground priors on adjacent patches in
smooth regions. Then conduct an exponential operation



S∗
r (n)=Sr (n)3 to remove the fuzzy background generated

by using the additive Bayesian formulation.

From these processes, we can see that our proposed approach
is biologically plausible since neurobiological evidences
show that the bottom-up factors in human vision system act
faster than the top-down factors (Wolfe et al. 2000; Hen-
derson 2003). Visual signals will first compete fairly to
generate the bottom-up saliency, while a slower recall or
recognition process is conducted to load the related prior
knowledge into the working memory to bias the competi-
tion. In this process, the bottom-up saliency maps are mod-
ulated by various top-down priors to pop-out the real tar-
gets and suppress the real distractors. Moreover, we can also
see that our approach exhibits good generalization abilities
and can be easily extended. On one hand, we can plug any
state-of-the-art bottom-up saliency model into the proposed
framework, no matter how it detects saliency. On the other
hand, if we can learn more kinds of prior knowledge (e.g.,
the task-dependent priors), we can easily incorporate them
into our framework by calculating more kinds of top-down
saliency maps, leading to a more accurate estimation of visual
saliency.

5 Experiments

In this section, several experiments are conducted to prove the
effectiveness of our approach. The main objectives are two
folds: (1) to evaluate whether the prior knowledge is useful
in estimating visual saliency and (2) to explore how the prior
knowledge works in the estimation processes. Toward this
end, we adopt two datasets in the experiments, including:

– Toronto-120. This popular dataset was first proposed in
(Bruce and Tsotsos 2006) and has been used in many
recent studies on visual saliency. It contains 120 color
images. On each image, the fixations from 20 different
subjects were recorded under the free-viewing conditions
to reveal the locations of the salient targets.

– MIT-1003. This dataset was provided by Judd et al.
(2009). It consists of 1,003 images in total, most of which
are color images. The eye tracing data were recorded
from 15 subjects who free viewed these images. Com-
pared with Toronto-120, this dataset is more challeng-
ing since images in this dataset are usually more com-
plex and most of them contain a lot of targets and
distractors.

On these two datasets, we adopt ten approaches for compar-
ison. All the source codes or executables can be found on the
Internet. These approaches can be roughly categorized into
two groups, including:

– BU Group. This group contains six bottom-up approaches,
including CS1 (Itti et al. 1998), GB (Harel et al. 2006),
SR (Hou and Zhang 2007), FT (Achanta et al. 2009),
CA2(Goferman et al. 2010) and RA (Riche et al. 2012).
These bottom-up approaches only utilize the input visual
signals to generate the bottom-up saliency maps. By com-
paring our approach with them, we wish to prove that
incorporating the learned statistical priors can improve
the performance of visual saliency estimation by modu-
lating bottom-up saliency.

– STAT Group. This group contains four statistical
approaches, including AIM (Bruce and Tsotsos 2006),
ICL (Hou and Zhang 2008), SUN (Zhang et al. 2008) and
SER (Wang et al. 2010). These approaches also utilize
the statistical image priors. By comparing our approach
with them, we wish to prove that our framework is more
effective in utilizing the learned prior knowledge.

In the comparison, we use the Area Under the ROC Curve
(AUC) for performance evaluation. Since different saliency
models often generate saliency maps with different resolu-
tions, we resize all these saliency maps to the original resolu-
tions of the input images for fair comparison. Suppose that the
estimated saliency value for each pixel is in [0,1], a saliency
model can be treated as a binary classifier by using all prob-
able saliency values as the thresholds. On each threshold, a
pixel can be classified as “fixated” or “non-fixated” using its
saliency value. The classification results are then validated
by the eye fixations to obtain the numbers of true positives,
true negatives, false positives and false negatives. Conse-
quently, we can calculate the true positive rate (TPR) and the
false positive rate (FPR) on each threshold. Finally, the ROC
curve can be built by plotting all the (TPR, FPR) points and
the Area Under the ROC Curve can be used to quantify the
performance of the saliency model. A perfect saliency model
corresponds to an AUC of 1.0, while a random model will
have an AUC of 0.5.

When computing AUC, the central fixation bias is an
important issue. That is, human fixations are often biased
to image centers while non-fixated pixels usually distrib-
ute around image edges. However, the different distributions
of fixated and non-fixated pixels often lead to unfair com-
parisons by favoring the saliency models that mainly high-
light the targets around image centers (e.g., using center-
bias re-weighting) or ignore distractors near to image bor-
ders (e.g., using the border cut). Inspired by the approach
used in (Tatler et al. 2005), we randomly re-sample the non-
fixated pixels according to the distribution of fixations on
all the images in the same benchmark. In the re-sampling

1 The “winner-take-all” competition is not used in CS.
2 The face detection component is not activated and here we can treat
CA as a bottom-up approach.



Fig. 9 Non-fixated pixels are re-sampled for fair comparison. In the
re-sampling process, only the non-fixated pixels that are away from the
fixated ones will be used as candidates to avoid possible ambiguities
(i.e., pixels in the fixation density maps should have scores less than
0.05). Moreover, these non-fixated pixels are re-sampled with respect

to a reference map generated by summing up all fixation density maps
in the same benchmark. In this manner, most non-fixated pixels around
image borders are ignored to avoid favoring saliency models that empha-
size targets near image centers (e.g., using center-bias re-weighting) or
ignore distractors around image borders (e.g., using border cut)

process, we mainly refer to the fixation density maps that
are usually generated by summing up a set of 2D Gaus-
sians centered at each fixation point. For the sake of sim-
plicity, we assume that each pixel in the fixation density
map is assigned a score between [0, 1]. As shown in Fig. 9,
we only re-sample the non-fixated pixels from those with
scores lower than 0.05. In this manner, we can avoid possi-
ble ambiguities such as simultaneously selecting fixated and
non-fixated pixels from the same object. For these candi-
date pixels, we generate a reference map by summing up
all the fixation density maps from all the images in the
same benchmark to guide the re-sampling process. Note
that different benchmarks may have different reference maps
due to different experimental settings (e.g., viewing dis-
tance, angle and image/screen resolution). A non-fixated
pixel will be selected with a high probability if the cor-
responding pixel in the reference map has a high score.
Finally, only the selected non-fixated pixels, which are also
biased to image centers, will be used for performance eval-
uation.

Actually, the proposed re-sampling strategy is quite rea-
sonable, making the comparisons much fairer than using
unbiased re-sampling. For instance, Judd et al. (2009) ran-
domly selected 10 fixated and ten non-fixated pixels from
the top 20 % and the bottom 70 % salient pixels on 100
images of MIT-1003. They further divided each image into
center region and peripheral region, while the center region
lies in a circle around image center whose radius equals
to 42% of the distance from image center to image cor-
ner. After the division, the center region contains 78.8% fix-
ated pixels and 24.5% non-fixated pixels, while the num-
bers change to 21.2% and 75.5% in the peripheral region,
respectively. In this case, a model that simply emphasizes

the center region will pop-out most of the fixated pixels and
suppress most of the non-fixated pixels, leading to unfair
comparisons. To address this problem, we re-sample the non-
fixated pixels according to fixation density maps. After the
re-sampling, the center region contains 71.0% fixated pix-
els and 64.1% non-fixated pixels, while the numbers change
to 29.0% and 35.9% in the peripheral region, respectively.
When the ratios of fixated and non-fixated pixels are compa-
rable in each region, emphasizing only the center region will
no-longer obtain much gain, making the comparisons much
fairer.

Moreover, there are usually two ways to evaluate the over-
all performance on multiple images: (1) calculate the AUC
score on each image first and then compute the mean and
standard deviation of all the AUC scores; and (2) summing
up the numbers of true positives, true negatives, false posi-
tives and false negatives on all images and generate a unique
ROC curve, leading to a unique AUC score. Both ways can
make sense and we will adopt the first way in the following
experiments.

5.1 Whether It Works

In the first experiment, the main objective is to see whether
our approach can really work. Toward this end, we adopt
six bottom-up models to see whether the prior knowledge
learned by our approach is effective to modulate the bottom-
up saliency. In this process, we use 32 visual words and set
e−αb ≈ 0 (the influences of these parameters will be dis-
cussed in other experiments). We also compare the modulated
saliency maps with those maps generated by four approaches
in the statistical group to see whether our framework can uti-
lize the learned prior knowledge in a more effective manner.



Table 1 Performance of various approaches on the two image bench-
marks

Approaches Toronto-120 MIT-1003

BU Group CS 0.731 ± 0.123 0.678 ± 0.134

GB 0.762 ± 0.134 0.700 ± 0.152

SR 0.763 ± 0.122 0.693 ± 0.142

FT 0.575 ± 0.126 0.554 ± 0.130

CA 0.797 ± 0.100 0.713 ± 0.140

RA 0.821 ± 0.090 0.722 ± 0.135

STAT Group AIM 0.758 ± 0.109 0.700 ± 0.123

ICL 0.787 ± 0.112 0.708 ± 0.153

SUN 0.705 ± 0.129 0.667 ± 0.136

SER 0.786 ± 0.113 0.704 ± 0.152

OUR Group Our+CS 0.794 ± 0.118 0.714 ± 0.143

Our+GB 0.804 ± 0.122 0.710 ± 0.153

Our+SR 0.797 ± 0.112 0.706 ± 0.148

Our+FT 0.710 ± 0.148 0.637 ± 0.168

Our+CA 0.816 ± 0.102 0.725 ± 0.140

Our+RA 0.834 ± 0.086 0.738 ± 0.134

The OUR Group illustrates the AUC scores of our approach when mod-
ulating the bottom-up saliency maps generated by different models

The AUC scores are shown in Table. 1. Some representative
examples are illustrated in Fig. 10. Note that the fixation den-
sity maps are generated by filtering the pixel-wise fixation

maps using a Gaussian kernel to account for inaccurate track-
ing results and the decreasing visual accuracy with increasing
eccentricity from the fovea.

From Table. 1, we can see that the priors learned by our
approach can improve the saliency maps generated by all
the six bottom-up approaches. No matter how the bottom-up
competitions are conducted in these approaches, our learned
prior knowledge can effectively recover the wrongly sup-
pressed targets and inhibit the improperly popped-out dis-
tractors. As shown in Fig. 10, a salient patch will selec-
tively excite the tightly correlated patches using the corre-
lation prior, while the distractors, especially the common
background patches, can be effectively suppressed by using
the foreground prior. In traditional bottom-up models, high
saliency values are usually assigned to unique or rare visual
subsets. However, the assumption that visual rarity corre-
sponds to high saliency may not always hold since the back-
ground patches can sometimes become unique or rare (e.g.,
the building in Fig. 10b, d). These patches, which are already
very familiar to the subjects, will be easily ignored. However,
the bottom-up approaches will equally treat all the input sig-
nals since they have no prior knowledge on what the patch
is. In our approach, we find that such common distractors
often distribute around image edges. Therefore, we learn the
distribution maps and quantify their center-bias properties to
determine whether a patch is a common background patch

Fig. 10 Some representative saliency maps generated by various
saliency models. The first row shows the input images and the sec-
ond row illustrates the corresponding fixation density maps. The third
row contains bottom-up saliency maps calculated by (a)–(b) CS; (c)–

(d) GB; (e)–(f) SR; (g)–(h) FT; (i)–(j) CA; (k)–(l) RA. The 4th row
demonstrates our results acquired by modulating the bottom-up saliency
maps with the learned priors. The last four rows are results from AIM,
ICL, SUN and SER, respectively



or not. Then these patches will be effectively recognized and
suppressed.

From Table 1, we can also see that the modulated saliency
maps from CS, GB, SR, CA and RA can better predict human
fixations than those saliency maps generated by another four
approaches in the statistical group. This is mainly due to two
reasons. First, most of the parameters used in our approach
(e.g., the visual words, foreground and correlation priors) are
learned from millions of images. Therefore, our approach can
well handle the outliers. Second, we have adopted an oppo-
site way to use the learned priors. In our approach, each patch
is quantified to the nearest visual word and represented only
by an integer label. In this process, many details are dis-
carded but the integer label can work well since its main
role is to retrieve the related prior knowledge. On the con-
trary, the other approaches will map the patch into a sub-
space with much higher dimensions and then estimate visual
saliency in that subspace. Since the subspace may be not opti-
mal, there may generate rich redundancies in the mapping.
As illustrated in Fig. 10, these redundancies may generate
many “noise” in the estimated saliency maps since it can
be very difficult to distinguish targets from distractors when
projecting all the signals onto specific basis. Therefore, these
approaches achieve lower AUC scores.

Generally speaking, the main difference between our
approach and all the other approaches discussed above lies in
that we treat the input signals with bias. That is, each kind of
prior knowledge will demonstrate a specific kind of biased
selectivity in visual saliency estimation. For instance, the
foreground prior will selectively suppress the patches that are
judged as distractors, while the correlation prior will selec-
tively enhance the patches around existing salient patches.
Actually, such selectivity is well supported by biological evi-
dences, which have proved that the top-down factors can bias
the competition between the neurons linked with visual stim-
uli by favoring a specific category of stimuli.

In particular, the priors used in our approach are statisti-
cally learned from massive images in an unsupervised man-
ner. Compared with Torralba et al. (2006) and Chikkerur
et al. (2010) that mainly focused on incorporating the task-
dependent priors, our approach can be used in much more
scenarios to predict human fixations under free-viewing con-
ditions since we have no assumption on the probable target-
of-interests. Another advantage of learning the prior knowl-
edge from millions of images is that the over-fitting risk can
be largely avoided. Compared with the models trained on
hundreds of images, our model often demonstrates impres-
sive generalization ability. For instance, Judd et al. (2009)
selected 903 images from MIT-1003 and extracted a set of
low-, mid- and high-level features as well as the center prior
to train a linear SVM model as the saliency model. Even
with such a large feature pool, the AUC only reached 0.725
on the rest 100 images. Actually, if we adopt the same center-

surround contrast features used in CS to train the linear SVM
model, the AUC will decrease to 0.684. This is natural since
simple linear weights often lack the ability to model complex
priors. Actually, people may attend to the salient targets in
limited training images by only focusing on some specific
features (e.g., human face as a special case). However, these
features, which can be mined through supervised learning
algorithms, may not always work well on the testing images
(i.e., over-fitting). Therefore, it is necessary to learn the prior
knowledge from massive unlabeled training images, proba-
bly by using unsupervised learning algorithms.

5.2 How It Works

To further investigate how the learned priors work in the top-
down modulation, we conduct several experiments on the
Toronto-120 dataset to see the influence of various parame-
ters and top-down priors. In these experiments, we adopt the
bottom-up saliency maps generated by CS, which is treated
as a baseline approach with AUC=0.731.

First, we conduct an experiment to see the influence of
the number of visual words. In the experiment, we test 4, 8,
16, 32, 48, 64, 128, 256, 512 and 1024 visual words, and
the AUC scores are shown in Fig. 11a. From Fig. 11a, we
can see that our approach performs the best when using 32
visual words. When using more visual words, the perfor-
mance gradually decreases. Although more visual words can
better describe the details of the input images, they will also
become more sensitive to noise and small fluctuations. For
instance, two image patches with similar contents may be
mistakenly quantized to different visual words. Due to the
probable increase of such classification errors when using
more visual words, the learned prior knowledge will become
less reliable. Moreover, when using visual words less than
32, the influence of foreground prior will greatly decrease.
For instance, when using four visual words, each visual word
appears at each specific location with almost the same fre-
quency. In this case, it is difficult to identify whether a patch
belongs to foreground or not.

Second, we conduct an experiment to see the influence of
αb (i.e., e−αb = P(rn|sn, fn)), which indicates whether to
trust the foreground prior when it makes conflict prediction
with the bottom-up saliency model. When αb is large (i.e.,
e−αb is small), we choose to trust the foreground prior, and
vice versa. In the experiment, we vary αb from +∞ to 0.
Equivalently, e−αb changes from 1 to 0 and the AUC scores
are shown in Fig. 11b. From Fig. 11b, we can see that setting
e−αb ≈ 0 can guarantee the best performance for Our+CS,
which proves the effectiveness on the learned foreground
prior.

Third, we conduct an experiment to show the influences
of foreground and correlation priors. By setting P(rn|sm)=0
in (1), we find that the AUC can reach 0.771 when only using



Fig. 11 The AUC scores of our approach on the Toronto-120 dataset
when using different parameters such as (a) different number of visual
words and (b) different αb. Note that here the error bar corresponds
to σ√

N
, where σ is the standard derivation of AUC and N is the total

number of images in Toronto-120

the foreground prior. In contrast, the AUC can reach 0.746
when using only the correlation prior by setting P(rn|sn)=1
in (1). By combining these two kinds of prior knowledge, the
overall AUC can reach 0.794. In particular, we find that the
post-smoothing also contributes to the overall performance,
while the exponential operation, which can often provide a
“cleaner” viewing effect, has almost no influence on the AUC
scores since it will not change the order of patch saliency
values. When the post-smoothing operations are not used, the
AUC can only reach 0.782. The reason is that there may exist
some “holes” when modulating the bottom-up saliency using
the foreground prior since adjacent patches in smooth regions
sometimes are wrongly classified to different visual words.
The overall AUC will probably decrease without filling such
“holes” using the post-smoothing operation.

To sum up, the proposed approach can work well in visual
saliency estimation and demonstrate several advantages in
utilizing the prior knowledge. Actually, the whole framework
can be uniquely characterized by two main phases, one fast
bottom-up phase and one slow top-down phase. The bottom-
up phase is mainly driven by data and transfers signals in a
feed-forward manner. In the transmission, certain attributes
of the data will be gradually extracted to active the related
prior knowledge to generate feed-backward control signals.
Compared with the models that contain pure bottom-up or

top-down phase or parallel bottom-up/top-down phases, such
framework has been proved to be consistent with the neuro-
biological mechanisms demonstrated in human perception
experiments and takes advantage of optimizing each phase
separately (Han and Zhu 2009; Wu and Zhu 2011).

Moreover, the framework in our approach can be easily
extended. Once we learn some new kinds of prior knowl-
edge, we can easily add them into our framework like the
foreground and correlation priors. With this additive frame-
work, we believe that the performance of visual saliency esti-
mation can be gradually improved and a “perfect” model
is expectable. Furthermore, our approach can be easily dis-
tributed on multiple computing units. This is very impor-
tant since the learned knowledge database could become
extremely large in the future (e.g., thousand kinds of prior
knowledge). In our framework, different kinds of prior
knowledge can be deployed on different computers, each of
which can bias the competition of the input stimuli to gener-
ate a specific top-down saliency map and numerous top-down
saliency maps can be fused to better predict human fixations.

6 Conclusion

This paper presents a novel approach for visual saliency esti-
mation by using the statistical prior knowledge. We find that
the bottom-up saliency estimated by existing stimulus-driven
models can be further improved in top-down modulation.
Thus we adopt a Bayesian framework to incorporate the
influence of the prior knowledge, while such prior can be
learned unsupervisedly from massive image statistics. From
the experimental results, we can see that such statistical pri-
ors are very effective in recovering the wrongly suppressed
targets and removing the improperly popped-out distractors.

In the future work, we will extend our approach by incor-
porating several new kinds of prior knowledge. We will also
try to bring in some other top-down factors such as the task
prior and global context prior. Since the proposed framework
can be easily extended, we believe that its performance can
be gradually improved by modulating the bottom-up saliency
with more and more top-down factors.
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