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Abstract—1In visual saliency estimation, one of the most
challenging tasks is to distinguish targets and distractors that
share certain visual attributes. With the observation that such
targets and distractors can sometimes be easily separated when
projected to specific subspaces, we propose to estimate image
saliency by learning a set of discriminative subspaces that per-
form the best in popping out targets and suppressing distractors.
Toward this end, we first conduct principal component analysis
on massive randomly selected image patches. The principal
components, which correspond to the largest eigenvalues, are
selected to construct candidate subspaces since they often demon-
strate impressive abilities to separate targets and distractors.
By projecting images onto various subspaces, we further charac-
terize each image patch by its contrasts against randomly selected
neighboring and peripheral regions. In this manner, the probable
targets often have the highest responses, while the responses at
background regions become very low. Based on such random
contrasts, an optimization framework with pairwise binary terms
is adopted to learn the saliency model that best separates
salient targets and distractors by optimally integrating the cues
from various subspaces. Experimental results on two public
benchmarks show that the proposed approach outperforms
16 state-of-the-art methods in human fixation prediction.

Index Terms—Fixation prediction, learning-based model,
random contrast, subspace analysis, visual saliency.

I. INTRODUCTION

ISUAL attention, which is one of the most important
mechanisms in the human vision system, works like a
filter between sensation and perception. From a scene with
a wealth of visual stimuli, our attention system can help to
block the redundancies so that only the most conspicuous
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Fig. 1.  Different subspaces have different capabilities in distinguishing
targets and distractors. The salient target in the first image is marked with
a blue contour, while the remaining show the average responses in the target
and background region when projecting the image onto different subspaces
(e.g., intensity, red/green, and blue/yellow color opponencies; independent
components; or sparse basis learned by [15] and [16]). Note that the projected
coefficients are normalized to the dynamic range of [0, 1].

subsets can enter the higher brain regions for complex analy-
sis. Such conspicuous visual subsets, namely, the salient
targets, are crucial for the human to understand the visual
scene. Consequently, the performance of computer applica-
tions such as video compression [1], [2], seam carving [3],
scene understanding [4], and image retrieval [5]-[7] can be
greatly improved by detecting the salient targets in images and
videos.

To detect salient targets in images, existing studies often
compute a saliency map to indicate the important values of
all visual subsets. In different approaches, such subsets can
be selected as pixels [8], macroblocks [9], or regions [10].
In the computation, a frequently used solution is to represent
each subset with multiple visual features and then measure
its saliency by fusing the irregularities from various feature
channels. For example, Itti ef al. [9] combined the multiscale
center—surround contrasts from intensity, color opponencies,
and orientations to generate a final saliency map. Hu et al. [11]
first turned images into polar space to measure pixel irregular-
ities. Duan et al. [12] and Riche et al. [13] adopted the YCbCr
color space for visual saliency estimation. Goferman ez al. [14]
exploited the influence of high-level features (e.g., the face)
for estimating image saliency. For these approaches, a latent
hypothesis is that the targets can always be separated from
distractors in some specific feature channels. However, the
distractors, which may share some visual attributes with salient
targets, would be also assigned high saliency scores (e.g., the
intensity channel in Fig. 1), leading to a fuzzy saliency
map. In fact, an image can be represented by various feature
channels, which have different capabilities to distinguish



targets and distractors (as shown in Fig. 1). Without loss of
generality, we represent each channel as a subspace, and the
objective of saliency estimation can be formulated as finding
the optimal subspaces that perform the best in popping out
targets and suppressing distractors.

To address this problem, two solutions have been pro-
posed in recent studies. In the first solution, approaches such
as [15]-[17] were proposed to obtain a set of subspaces
through unsupervised learning [e.g., independent compo-
nent analysis (ICA) and sparse coding theory]. In these
approaches, a set of sparse codes (or sparse functions or
visual words) were first learned from massive patches sampled
from training images. Images are then projected onto sub-
spaces formed by these sparse codes for saliency estimation.
In this manner, redundancies in the input visual stimuli can
be greatly removed, and it often becomes easier to detect
salient regions in a set of independent subspaces. Instead
of learning new subspaces, approaches in the second solu-
tion aimed to seek an optimal combination of the classical
feature subspaces such as local contrasts [18]; low-, mid-,
and high-level features [19]; and wavelet energy [20].
In these approaches, the supervised learning algorithms are
often adopted to train the best feature-saliency mapping
model on training images with user annotations (e.g., fixations
or binary masks of salient objects). In general, all these
approaches can achieve impressive performance but also have
some drawbacks. The approaches in the first solution may
pop out distractors mistakenly due to the heuristic integration
of saliency from various independent subspaces, while the
approaches in the second solution may not work if all the
predefined subspaces fail to distinguish targets from distrac-
tors. Therefore, it is necessary to integrate advantages of the
two solutions by building candidate subspaces from unsu-
pervised learning and then optimally integrate them from
supervised learning.

Inspired by this idea, we propose a novel approach to
learn discriminative subspaces for image saliency estimation.
In our approach, we first conduct principal component
analysis (PCA) on massive randomly selected natural image
patches. The principal components, which correspond to the
largest eigenvalues, are then selected to build candidate sub-
spaces since they often demonstrate impressive discriminative
abilities on targets and distractors. By projecting images on
various subspaces, we further characterize each image patch by
its average contrasts between randomly selected neighboring
and peripheral regions. This random contrast map (RCM)
can ensure that the probable target regions have the highest
responses, while the lowest responses are assigned to the
background. Based on such random contrasts, an optimization
framework with pairwise binary terms is adopted to optimally
integrate various subspaces under the principle of maximizing
the responses of targets while minimizing the responses of dis-
tractors so as to separate them perfectly. Experimental results
of two public benchmarks show that the proposed approach
outperforms 16 approaches (see [15], [18], [21]-[23])
in human fixation prediction and achieves impressive results
when processing images with cluttered background and
small/medium/large salient objects.

Our main contributions are summarized as follows.

1) We propose to build candidate subspaces from PCA,
which can reflect the distribution of the input visual
stimuli and perform much better in distinguishing targets
from distractors than predefined subspaces.

2) We present an algorithm to characterize an image patch
in each subspace with its contrasts against randomly
selected neighboring and peripheral regions. Such con-
trast can be computed with high efficiency to ensure
that the probable targets are assigned with the highest
responses in most cases.

3) An optimization framework with pairwise binary terms
is proposed to learn the most discriminative subspaces
for image saliency analysis. The effectiveness of the
proposed approach is confirmed by comparisons with
other approaches in extensive experiments.

The rest of this paper is organized as follows. Section II
reviews related works, and Section III formulates the problem
of saliency estimation from the perspective of separating
targets and distractors. In Section IV, we describe the details
of the proposed approach. Experimental results are presented
in Section V, and the entire paper is concluded in Section VI.

II. RELATED WORK

In general, existing approaches on visual saliency estimation
mainly differ in two aspects: which subspaces (e.g., color
channels; scales; low-, mid-, and high-level features; inde-
pendent components; and sparse codes) are used and how
to integrate the results from various subspaces. According
to those differences, most existing saliency models can be
categorized into three groups.

Saliency models in the first group adopt predefined sub-
spaces and integrate saliency cues from various subspaces in a
heuristic manner. The work of Itti et al. [9], which was derived
from the idea of [24], was one of the most representative
saliency models in the literature. It first represented image in
predefined color subspaces such as intensity, red—green, and
blue—yellow color opponencies as well as four orientations.
After that, local center—surround differences were computed in
each subspace to simulate the receptive fields of various neu-
rons. Finally, such local contrasts were integrated with equal
weights to produce the final saliency map. Riche et al. [21]
measured multiscale rarities in color and orientation feature
channels and outputted saliency map by intra- and interchannel
fusion strategies. Erdem and Erdem [25] directly calculated
the distance between the covariance of color, orientation, and
spatial features extracted at a local image patch and those of
the surrounding patches as its saliency. Gao et al. [26] pro-
posed to integrate center—surround differences deviated from
intensity, color, and orientation subspaces using the decision
theory. Beyond the local cues, some models [13], [27], [28]
measured image saliency from the perspective of global
rarity. In [22], saliency was derived from the random
walking process on a fully connected graph, whose nodes
represented image patches and edges were weighted by
the mutual similarities. For an image, patches distinctive
from the others will be less visited in the random walk
and thus become salient. Moreover, some approaches were



proposed to segment images into regions or superpixels.
In this manner, the saliency value of a region can be
computed by fusing weighted regional contrasts [10], [29].
Sun et al. [30] calculated saliency in RGB subspace by
analyzing the self-information of the super Gaussian compo-
nents computed from image patches. Beyond defining saliency
as visual rarity, Zhang and Sclaroff [31] computed image
saliency by averaging the Boolean maps obtained from lab
color channels with random thresholds based on the gestalt
principle.

As an extension of spatial feature subspaces, some models
were proposed to detect saliency by incorporating the
cues from temporal and semantic subspaces. For example,
Li et al. [32] obtained video saliency by computing regional
dissimilarities from motion, color, and texture features.
The probabilistic model in [33] integrated the bottom—up
saliency map with the learned scene/context priors to produce
image saliency. Cerf et al. [34] demonstrated that incorpo-
rating the face detection result with the bottom—up saliency
map of [9] and [22] could achieve a better performance
in saliency prediction. Moreover, some models adopted
transformed domains for saliency analysis. For example,
Hou and Zhang [35] proposed to estimate saliency by
analyzing the spectral residual in the amplitude spectrum
of image intensity, while Guo er al. [36], [37], and
Li ef al. [38] performed the quaternion Fourier transform on
multiple feature channels (e.g., intensity, color, and motion)
for saliency analysis. Garcia-Diaz et al. [39] estimated the
optical variability with intensity, spectral wavelengths, and
spatial frequency for saliency calculation.

In general, models with predefined subspaces can effectively
estimate image/video saliency once targets and distractors can
be well separated in certain subspaces. However, those models
may fail if all the predefined subspaces cannot separate targets
and distractors. Moreover, the heuristic combination of the
results from various subspaces often performs unsatisfactory
in distractor inhibition. In this case, the estimated saliency
map often contains rich noises. As a result, models in the
second and the third group proposed to obtain better candidate
subspaces and subspace fusion strategies through unsupervised
and supervised learning, respectively.

To address the first problem of using predefined subspaces,
models in the second group try to learn the candidate sub-
spaces from image statistics and heuristically fuse saliency
cues from these subspaces. Since independent components
can decorrelate the input stimuli and, more importantly, they
can simulate the receptive fields of simple cells in VI,
models [40]-[44] were proposed to learn independent compo-
nents from massive image patches for the subspace construc-
tion. Among these approaches, Bruce and Tsotsos [15] and
Hou and Zhang [16] represented image patches by projecting
their RGB values onto the learned independent component
subspaces. After that, visual saliency was computed from the
perspective of self-information or coding length increment.
Borji and Itti [17] applied ICA in both RGB and lab color
spaces to build candidate subspaces, in which the local and
global irregularities were detected and then integrated with
several predefined fusion schemas such as {4, %, max, or min}.

Instead of using independent components, some
models [28], [45] adopted principal components in the
subspace construction, since the projection onto the principal
components with the highest eigenvalues has higher variances.
In this manner, fixated and nonfixated locations have steeper
contrasts, making it easier to distinguish them [46]. Beyond
directly constructing subspaces with ICA and PCA, some
approaches were also proposed to learn a set of visual words
and their statistical information for saliency computation. For
example, Parikh et al. [47] calculated saliency based on the
co-occurrence of visual words and their spatial information.
Li et al. [23] proposed to modulate the bottom—up saliency
map with foreground and correlation priors between visual
words learned from millions of images. In the general
case, approaches in the second group can construct better
subspaces in a data-driven manner. However, the heuristic
combination of subspaces may still lead to noisy saliency
maps. Therefore, it is necessary to conduct a certain selection
on these learned subspaces to find the most discriminative
ones.

To address the second problem of heuristic fusion, models in
the third group focus on learning the optimal fusion strategies
for combining results from various predefined subspaces.
That is, they conduct some kinds of selections, or namely,
reweighting of predefined subspaces. Usually, various kinds
of machine learning algorithms are used in these approaches
to learn the optimal weights of features from training images
with user annotations.

Among these approaches, support vector machine (SVM)
is one of the most frequently used learning algorithms. For
example, Kienzle et al. [48] proposed a nonparametric method
to learn the stimulus-saliency mapping function directly from
gray image patches by SVM. Judd et al. [19] used SVM to
train a linear model with the weights of predefined low-level
(e.g., the features used in [14] and [15], and so on), mid-level
(e.g., the horizon line), and high-level (e.g., the face and
the person) features as well as the center prior. Instead of
using SVM, Zhao and Koch [18] and Borji [51] adopted
Adaboost algorithm for training the saliency model, while
Li et al. [52] adopted a learning-to-rank framework to learn a
linear model for combining the local contrasts of intensity,
color, and orientation. Typically, models in this group can
achieve impressive performance by selecting and emphasizing
the most discriminative subspaces. However, the learned model
may fail when none of the predefined subspaces can separate
targets from distractors.

To sum up, it is necessary to build effective subspaces that
can reflect the distribution of the input stimuli; meanwhile the
selection of such subspaces is also an essential step to pop out
targets and inhibit distractors. Toward this end, some models
were proposed to simultaneously learn the optimal subspaces
as well as their fusion strategies in an unified framework.
For example, Kanan er al. [42] calculated saliency as the
probabilistic classifier log p(C = 1|F) learned by SVM
and independent component features. Yang and Yang [53]
computed image saliency by simultaneously training the con-
ditional random field and the visual dictionary. Vig ef al. [54]
searched optimal multilayer predefined feature models and
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System framework with a training stage and a testing stage. In the training stage, we first learn a group of principal components from massive

image patches randomly sampled from indoor and outdoor scenes, and these principal components are used to build candidate subspaces at multiple scales.
In each subspace, we extract an RCM for each training image, and the responses at various RCMs are used to characterize the target and distractor patches
nonuniformly sampled from all training images. On these training instances, a saliency model is trained by learning the most discriminative subspaces that
perform best in separating targets from distractors within the same image. The learned saliency model, which comprises the optimal subspaces (i.e., principal
components and scales) and their combination weights, can be used in the testing stage to efficiently highlight targets and suppress distractors.

learned the optimal combination by SVM. In this paper,
we will further explore how to construct effective subspaces
through unsupervised learning and select the most discrimina-
tive subspaces through supervised learning.

III. PROBLEM STATEMENT

In our approach, we aim to learn a set of subspaces as
well as their combination strategies that perform the best in
distinguishing targets from distractors. Suppose that we have
K training images in total, denoted by {Ik}f: |- Let Ty and Dy
be the sets of targets and distractors in I, respectively. For a
target 7 € Ty (or a distractor D € Dy), we can represent it
with ¢,(7) € R [or ¢,(D) € R] in the nth subspace, which
is denoted by S,. Without loss of generality, we assume that
there are totally N candidate subspaces and characterize 7
(or D) by a column vector ¢(7) [or ¢(D)]

H(T) = (P1(T), ..., ¢n (T (1)

Consequently, the objective of learning the visual saliency
model can be described as optimizing a feature-saliency map-
ping model F'(-) that performs the best in distinguishing targets
and distractors

K
min > > > H(F@:¢(D) < F(a: (D))
k=1 T Ty Dehy
SLOSF(m;¢(T) <1 VT €Ty, k=1,...,K
O0<F(;¢p(MD) <1 VDeDy, k=1,....,K (2

where 7 is the hyperparameter of F(-). Here, dJ(e)
is an indicator function whose value is determined by

event e

1, if e holds
o) = 0, otherwise. S

From (2), we can see that F(-) should assign high saliency
values to targets and low saliency values to distractors so as
to avoid the penalty. Compared with the optimization problem
in [18], [19], [48], and [51], the optimization problem in (2)
aims to integrate the features from various subspaces that per-
form the best in distinguishing the targets from the distractors
in the same image.

To solve the problem in (2), we can see that there are three
subproblems that should be addressed.

1) How to construct a set of subspaces {Sn}fl\’:1 that can

effectively separate targets and distractors.

2) How to find a feature ¢,(-) to characterize targets and
distractors in the nth subspace.

3) How to learn an optimal feature-saliency mapping func-
tion that performs the best in distinguishing targets from
distractors.

In the next section, these three subproblems will be
addressed. After that, we will introduce how to estimate
saliency scores with the learned feature-saliency mapping
function as well as the features derived from the learned
subspaces.

IV. VISUAL SALIENCY FROM SUBSPACE ANALYSIS
The system framework of our model is presented in Fig. 2.
From this framework, we can see that three major steps are
involved in training the saliency model, including: 1) building



Fig. 3. Representative coefficient map samples from candidate subspaces for one input image. These samples are randomly chosen and labeled with different
colors. Red: high responses at targets and low responses at the background. Blue: low responses at targets and high responses at the background. Green: high
and low responses at various parts of targets and average responses at the background. Orange: inseparable targets and the background.

candidate subspaces; 2) characterizing image patches in each
subspace; and 3) learning the discriminative subspaces and
their combination strategies. In the rest of this section, we
will focus on introducing the technical details of these three
steps as well as the way to compute saliency with the learned
saliency model.

A. Building Candidate Subspaces

When projecting an image onto a given subspace, each
image patch will obtain a projection coefficient. From the
perspective of signal processing, such coefficients should
demonstrate a large diversity so as to facilitate the detection
of irregular patches. Toward this end, we propose to build a
set of candidate subspaces by using PCA. First, we collect
1000 natural images from indoor and outdoor scenes and
extract 400000 nonoverlapping patches (8 x 8 macroblocks
in this paper) from these images. For each patch, we extract
a color vector with 8 x 8 x 3 = 192 components, which
consists of lab colors of all pixels. Note that we normalize
all the components in the color vector to have zero mean
and unit standard deviation. By using the PCA algorithm on
the covariance matrix of the normalized color vectors, we
can get D = 192 principal components {1, &, ..., Ep}) that
correspond to the eigenvalues A; > A, > ... > Ap. Often,
the principal components corresponding to larger eigenvalues
are believed to have a better capability in separating the
conspicuous image content from the background. Thus, we
empirically select the first d principal components to build
the candidate subspaces (the influence of d will be discussed
in Section V).

When building the candidate subspaces, we often expect
that they have the capability to handle targets and distractors
at various scales. Toward this end, we propose to build
N subspaces totally from the selected d principal components,
while the nth subspace is denoted by S, = (s,, &,). Here
sp € {0,1,2} is the scale factor and &, € {&1,&,...,¢8)
is the principal component. To project an image on the
subspace S, we first convolve it with a Gaussian smoothing
kernel G(oy,) (60 = 2.5, 6 = (sp +1)"? - 69) and the
smoothed image is downsampled by a factor of 2% (note
that the original image is directly used when s, = 0). From
the smoothed image, we can extract a set of nonoverlapping
8 x 8 patches, and the projection coefficient for the patch at
the ith row and jth column can be computed from its

normalized color vector p;;

“)

Given the N candidate subspaces, we can obtain a set of
coefficient maps, denoted by {gon}nN=1, for an input image.
In Fig. 3, we demonstrate several representative coefficient
maps when projecting an image onto candidate subspaces.
We find that there exist four categories of coefficient maps.
The maps in the first category (marked with a red border)
achieve high responses at targets and low responses at the
background, while the maps in the second category (marked
with a blue border) act oppositely. Coefficient maps in the
third category, which are marked with a green border, achieve
high and low responses at different parts of targets, while
the background has average responses. Moreover, there also
exist some coefficient maps (marked with an orange border)
that fail to distinguish targets from distractors. Therefore, it is
necessary to seek effective features to further pop out targets
and suppress distractors in the coefficient maps from the first
three categories, while the subspaces from the fourth category
should be removed by a learning algorithm.

Pn(Pij) = fnTPij-

B. Computing Random Contrast Map

Before learning the discriminative subspaces, we have to
assign the highest responses to salient targets in the subspaces
from the first three categories. By observing the responses of
a large number of coefficient maps in the candidate subspaces,
we find three rules that can be effective to discriminate targets
from distractors in subspaces.

1) Targets may appear at any position and scale.
2) Distractors often appear around image borders.
3) Targets are visually distinct from its surroundings.

According to these rules, we find that the responses at
targets in a specific subspace can be adjusted as the differ-
ences between the projection coefficients of targets and its
surroundings. Furthermore, the differences between targets and
probable distractors could also help to increase the responses
at targets. Ideally, to handle salient targets with different sizes,
we can randomly select a set of rectangles with different
sizes and aspect ratios for each patch (i.e., flexible scales).
In this manner, our approach can adapt to both small and large
salient objects by using random rectangles. By enumerating
the regional contrasts between various center and peripheral



Algorithm 1 Ad Hoc Computation of RCM

Input : Coefficient map ¢, number of rectangles C.

Output: Random contrast map ¢

begin
Set ¢(0)(Pij) =0;Vi, j;
for c < 1to C do
Generate a random rectangle R.;
Compute 4" and u2"" using (6);
for V(i, j) € R, do

p ) <Dy
+min(lp(p;;) — w1, lp(pij) — wd™'1);

end

end

¢(p;j) = ¢(C)(pij)/c» Vi, J;
end

regions [55], we can pop out the salient targets at any scale.
However, it can be extremely time-consuming to test a large
number of rectangles (i.e., probable scales) for each patch
to find its probable scale, making this solution infeasible for
applications in real scenarios.

Inspired by [56], we randomly select only C rectangles in
the nth subspace for each projecting coefficient map, denoted
as {Rnc}cczl. With these rectangles, the random contrasts for a
patch at (i, j), denoted by ¢, (p;;), is computed as

1 c
D) = = ;6<(i’ J) € Ruo)

-min (|¢n(Pij) - #an >

on(pij) — ) (5
out

where ,u}l‘}: and wupe' are the average responses inside and
outside the rectangle Ry

2k P Pi) g 2ii)gRa Pn(Pij)

in
" 22(0.)eRne | " 22.j)¢Rne |

The algorithm of RCM computation is summarized in
Algorithm 1. Algorithm 1 computes the differences between
a patch and multiple randomly selected surrounding regions,
which can be viewed as the multiscale local contrasts. Also,
the differences against randomly selected peripheral regions
are also incorporated in (5) to characterize a patch, which
correspond to the contrasts against probable backgrounds.
To speed up the computation process, we restrain that the
area of each random rectangle should be larger than 1% of
the image. By computing the contrasts against the patches
inside and outside the rectangles, we can effectively pop out
the targets at different scales in the subspaces from the first
three categories (as shown in Fig. 5).

In the computation of RCM, the algorithm complexity may
become a major concern. Actually, the computation of RCM
is extremely efficient, since it adopts only C rectangles. For
an image with M patches, each rectangle is expected to cover
M /2 patches on average (if C is very large). From (5) and (6),
we see that only O(MC) additions are required in the
computation of RCM. In our implementation, it takes

0.020
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Average Distance
8
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10 10 10° 10° 10 10
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Fig. 4. Stability of using different numbers of random rectangles in
RCM computation. In different trails, the average difference between RCMs
computed by using the same number of rectangles will become extremely
small when sufficient random rectangles are used in the computation.

only 0.05 seconds to compute the RCM in a subspace for an
image with M = 128 x 96 patches and C = 10000 rectangles.

Moreover, we also conduct an experiment to test the stability
of the computed RCMs with Algorithm 1. In the experiment,
we collect Q = 100 images and project each image to a
randomly selected subspace S, 04 1,..., Q. On each
of the Q coefficient maps, we compute a set of RCMs in
T = 10 trails using C rectangles (C = 1, 10,..., 10%). Let
¢,§ﬁ;‘) and (/5[(,5:) be the RCMs computed in the uth and vth
trails with C random rectangles, which are of the gth image
in the subspace S, i and the difference between them can be
computed as the pixelwise £ — 2 distance

dist(¢55, 50

Hy Wy

1 . U
= HyW, DD (i @) — b @) (D)

i=1 j=I

where H; and W, are the height and width of the projec-
tion coefficient map of the gth image in the subspace Sy,
respectively. Given such a pairwise difference, we can further
measure the average difference Ac between the computed
RCMs on the Q images and T trails

1 e
Ac= @ DD dist(gin ) 50). ®)
g=1u#vo

As presented in Fig. 4, the average difference between
different trails may rapidly converge to an extremely small
value with sufficient rectangles. This fact ensures that, given
the input image and the subspace, we can obtain almost the
same RCMs if sufficient random rectangles are used. Inspired
by this idea, we also propose an adaptive algorithm to speed up
the computation of RCM. Different from the ad hoc algorithm
in Algorithm 1, the adaptive algorithm starts from a small
number of random rectangles (40 in this paper) and doubles
the number of rectangles in each iteration. The iteration, as
illustrated in Algorithm 2, will terminate when the computed



Algorithm 2 Adaptive Computation of RCM
Input : Coefficient map ¢, threshold €
Output: Random Contrast Map ¢.
begin

Set t =0, CO =40;

Compute ¢© using Algorithm 1 and C(©;

repeat

t=t+1;

Compute (;5\ using Algorithm 1 and CY~D;

¢ 0.5 ("D +3), O « 200D,
until dist(p, p0V) < ¢;

¢ =9,

end

Fig. 5. RCMs can pop out targets in subspaces from the first three categories.
For various kinds of coefficient maps (the second column), the RCMs can
assign the highest values to targets and the lowest values to distractors so as
to separate them (the third column).

RCM converges (i.e., the variation of RCMs in each iteration
is smaller than a predefined threshold). In experiments, we find
that the algorithm usually converge within three iterations, and
the algorithm adopts 122 random rectangles on average when
processing each of the 100 testing images.

Some RCMs on the coefficient maps in the first three
categories are displayed in Fig. 5. From Fig. 5, we
can see that the RCM can effectively assign the highest
responses to salient targets with various sizes and lowest
responses to distractors in the subspaces from the first three
categories.

C. Learning for Subspace Selection and Combination

Typically, RCMs for subspaces from the first three cate-
gories can assign high responses to targets at flexible scales
and low responses to distractors, while RCMs for subspaces in
the last category often fail to separate targets and distractors.
Therefore, we have to learn to select and combine RCMs
that perform the best in popping out targets and suppressing
distractors. Note that RCMs from various subspaces may have
different resolutions and dynamic ranges. To facilitate the
learning process, we further resize all RCMs to scale 0 and
normalize them to the same dynamic range of [0, 1]. Then,
we can characterize each 8 x 8 image patch with

¢(pij) = (¢1(pij)>-~-»¢N(pij))T ©)

where ¢(p;;) represents the feature of a patch p;; (i.e., the
RCM feature illustrated in Fig. 2).

Given the patch representation, we aim to train a feature-
saliency mapping function 0 < F(¢(p;;)) < 1 that performs
the best in distinguishing targets from distractors. Actually,
F(¢(p;;)) can take various forms such as linear, exponential,
or sigmoid functions. To demonstrate the effectiveness of our
approach, we adopt the linear function as follows:

F@@;)=w ¢®;), Iwlh=1, 0=w=1 (10

Before optimizing the parameter w, we have to select a
set of targets and distractors from the training images first.
Here we use the sampling strategy proposed in [19] and
randomly select ten target patches and ten distractor patches
from the top 20% and bottom 70% salient regions on the
fixation density maps, respectively. Note that positive training
instances are only sampled from the patches with the ground-
truth saliency value above 0.05 and the negative ones are
selected from the patches with the ground-truth saliency value
below 0.05. These patches are then represented by the contrast
values at the corresponding locations of RCMs (i.e., random
contrasts from various subspaces).

With these training instances, we can optimize F(¢(p;;))
by solving the binary optimization problem in (2)

K
min DD D W () < w (D))

k=1 T Ty Dehy

s.t. |[w|l; =1
0<w=1.

Y

To solve the optimization problem with a set of binary
terms, an alternative solution is to minimize its upper bound,
instead. Since

S(w' g(T) < w' (D)) < exp(w’ ¢(D) — w' (7))

we can rewrite the optimization problem as

K
min > >0 > expw$(D) - wp(T))

k=1 TETk DEDk

(12)

s.t. [wlli =1

0<w=xl. (13)



In this manner, the optimization problem becomes convex
with exponential terms and linear constraints only. Therefore,
we can use the Lagrangian multiplier method to efficiently
solve it and reach the global minimum. The best parame-
ter w*, which actually assigns a positive weight for each
candidate subspace, can be used for saliency prediction of
new images. In our experiment, we find that weights of
most subspaces are extremely small, which indicates that the
contribution of these subspaces, as well as the RCMs, is very
low in saliency computation. To speed up the computation
process, we only select subspaces with the highest weights
that sum up to 0.99, while all the other subspaces are
ignored in saliency computation (i.e., their weights are set
to zero). For the sake of simplicity, the adjusted parameters are
denoted by w.

Given a testing image, we can project it into the selected
subspaces and extract a set of RCMs from the projection
coefficient maps. These RCMs are then linearly combined to
generate the saliency map using the learned weights W. Since
the additive linear combination often leads to a fuzzy saliency
map, we adopt the normalization step presented in [22] twice.
In the normalization, the random walking is performed on the
saliency map to converge energy to the most salient locations
predicted by our approach, making the background much
cleaner. After that, we adopt a Gaussian convolution with
o = 2.5 to further emphasize the regions around the most
salient locations.

V. EXPERIMENTS

In this section, we aim to validate the effectiveness and
analyze the advantage of the proposed approach in image
saliency estimation with several experiments. Toward this end,
we utilize two classical benchmarks in the experiments.

1) MIT1003: This benchmark was provided by [19].
It consists of 1003 images and the corresponding
human fixations obtained under free-viewing conditions.
In the experiment, we use tenfold cross validation.
That is, we divide MIT1003 into ten subsets, each with
100 images (one subset contains 103 images). Each time,
we train a model with nine subsets and test it on the
rest subset, and we obtain 1003 saliency maps in this
manner. Note that the tenfold cross validation is repeated
ten times with different random splits of MIT1003, and
the mean and standard deviation of performance scores
are reported.

2) ImgSal: This benchmark was first proposed in [38].
It contains 235 color images, including 50 images with
large salient regions, 80 images with intermediate salient
regions, 60 images with small salient regions, 15 images
with cluttered background, 15 images with repeating
distractors, and 15 images with both large and small
salient regions. On this benchmark, we conduct a set
of experiments to further exploit the advantage of our
proposed approach.

In the experiments, 16 state-of-the-art approaches are used
for comparison. Beyond EDN [54], we can roughly categorize
these approaches into three groups from the perspective of
subspace generation and subspace combination.
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Fig. 6. Performances of 17 models on MIT1003. The error bar is o /+/1003,
where ¢ is the standard deviation of performance scores. Our approach
(denoted by OUR) outperforms all the other 16 models, while the AUC
score is comparable with BST (AUC, NSS, and CC: the higher, the better;
EMD: the lower, the better).

1) PH Group: This group contains seven bottom—up
approaches that adopt predefined subspaces (i.e., preat-
tentive features) and heuristic integration strategies,
including AWS [39], GB [22], RARE [21], COV [25],
CA [14], BMS [31], and SP [23].

2) UH Group: This group contains four approaches that
heuristically combine the subspaces learned through
unsupervised image statistics (i.e., independent com-
ponents, sparse codes, etc.). Approaches in this
group include AIM [15], ICL [16], SER [41], and
LG [17].

3) PL Group: This group contains four top—down meth-
ods that aim to combine predefined subspaces through
supervised learning, including JUD [19], BST [51],
ADA [18], and PMT [20].



Fig. 7.

When compared with these models, we use the area
under the ROC curve (AUC),! the normalized scanpath
saliency (NSS), the linear correlation coefficient (CC), and the
earth mover’s distance (EMD)? for performance evaluation.

In the comparison, the number of scales is set to 3 and all
the 192 principal components are used in the training process
(i.e., we have 3 x 192 = 576 candidate subspaces). We also

INote that there are many ways to compute AUC, and we
use the code provided by Judd et al [19], which is available at
http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html.

2Models that can better predict human fixations exhibit lower EMD and
higher AUC, NSS, and CC.

EDN
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Sample saliency maps generated by representative eight saliency models on the MIT1003 benchmark.

conduct several experiments to demonstrate the performance
(AUC and time cost) when the number of scales and principal
components vary.

A. Comparison With the State of the Arts

In the first experiment, we compare our approach with
the other 16 approaches on the MIT1003 benchmark.
The performance of these approaches are illustrated in
Fig. 6 and some representative results are demonstrated
in Fig. 7.

As shown in Fig. 6, saliency models in the PH group
can achieve promising performances with predefined



feature subspaces. Surprisingly, some models in the UH group,
which can learn a large number of subspaces from image
statistics, may perform even worse than some models in the
PH group (e.g., CA outperforms AIM and LG). This indicates
that beyond the generation of subspaces, the selection of
subspaces is also an essential step in building a saliency
model since we have demonstrated that targets and distractors
may become inseparable in some subspaces. As shown in
Fig. 7, the saliency maps may become very fuzzy by directly
incorporating the results from such predefined subspaces.

The models in PL group, which focus on the selection of
predefined subspaces, achieve impressive performances and
outperform most of the models in PH group and UH group.
This implies that the selection of subspaces is much more
important than the generation of candidate subspaces. How-
ever, the limited number of predefined subspaces may reduce
the performance of these learning-based models. Actually,
more candidate subspaces often facilitate performances, even
with the same learning algorithm. For example, both BST and
ADA adopt the boosting algorithm, while BST utilizes much
more candidate subspaces. In this manner, BST obtains better
performances (AUC = 0.837,NSS = 1.438,CC = 0.437,
and EMD = 5.055) than ADA (AUC = 0.735,
NSS = 0.857, CC = 0.250, and EMD = 6.053).

From Fig. 6 and the scores on all images of MIT1003,
we find that the AUC, NSS, CC, and EMD scores of our
approach are significantly higher (paired z-test, p < 0.05)
than those of the other 16 approaches (comparable only with
BST in terms of AUC). On the one hand, our approach learns
the candidate subspaces through PCA, which can characterize
the distribution of input visual stimuli. By incorporating the
scale factor, candidate subspaces could handle targets and
distractors with different sizes. In particular, once a sub-
space can separate targets and distractors, the RCMs can
assign the highest responses to targets with various sizes and
the lowest responses to distractors, which may facilitate the
learning process. On the other hand, our learning algorithm
aims to separate a set of target—distractor pairs, which, as
a consequence, can select the subspaces that perform the
best in separating targets and distractors in each image.
Compared with the classification framework used in models
from the PL group and EDN, we just separate targets and
distractors to avoid directly classifying patches as targets or
distractors. In this manner, our linear model performs better
(AUC = 0.837,NSS = 1.584,CC = 0.474, and EMD =
3.544) than the models learned in ADA, JUD, PMT,
and BST. Moreover, JUD and BST also utilize various
mid-level (e.g., the horizon line) and high-level features
(e.g., the face and the person), which may prevent the
usage of these approaches in general scenarios. For exam-
ple, saliency map of the fifth image in Fig. 7 produced
by the JUD model could accurately highlight the walkers
by using the person detector, but such detector is far from
perfect and may bring in false alarms in real-world scenes.
On the contrary, we only use low-level features in our
approach, implying that our approach can adapt to various
application scenarios in popping out targets and suppressing
distractors.
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Fig. 8.  Performance of our approach when using different numbers of
scales and principal components. We can see that our approach performs the
best when using three scales and all principal components. (a) Performance
with different numbers of scales; (b) Performance with different numbers of
principal components.
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B. Performance Analysis

Beyond the comparisons with the state of the art, we
also conduct several experiments to show the influence of
parameters as well as the computational complexity. In the first
experiment, we vary the number of scales and the number of
principal components to check the performance on MIT1003
benchmark. The experimental results are shown in Fig. 8.

From Fig. 8(a), we see that our approach performs the
best when using three scales (i.e., the original and its
1/2 and 1/4 versions). These scales are often sufficient to
cover the salient targets with various sizes. When using four
or five scales, the input image downsampled to a very small
resolution, and an image patch may simultaneously cover
parts of the target as well as the background region in
most cases, leading to inaccurate RCMs. We also find from
Fig. 8(b) that our approach performs the best when using all
the d = 192 principal components. In particular, using the
first several principal components corresponding to the largest
eigenvalues can already achieve the impressive performance,
while incorporating more principal components can gradually
improve the overall performance. Generally speaking, more
principal components (even the ones corresponding to small
eigenvalues) can provide us more information about the input
image, while our learning algorithm can select the most
useful information (i.e., subspaces formed by the best principal
components at the best scales) for saliency prediction.
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From the result of the first experiment, two major concerns
may arise: what is the performance of the proposed approach
when handling images that contain objects with different
sizes and how fast is the approach when using 192 principal
components?

To demonstrate the performance of our approach in process-
ing objects with different sizes, we conduct an experiment
on the ImgSal benchmark. ImgSal groups 235 images into
six categories according to the object size and background
complexity. In particular, we adopt the model trained on all
images from MIT1003 benchmark to demonstrate its gener-
alization ability. The performance of our approach and some
other saliency models that perform among the best on the
MIT1003 data set (i.e., GB and BMS from the PH group,
ICL, and SER from the UH group, JUD from the PL group),
are demonstrated in Fig. 9. From Fig. 9, we can see that our
saliency model performs the best in all the six categories. Note

Repeating Distractors

Category 4: Category 5: All

Cluttered Background Regions of Different Sizes

Category 6:

Model comparison of six models on the ImgSal data set. Performances on every single category and the whole benchmark are displayed.

Category 4:
Repeating Distractors

Category 5:
Cluttered Background

Category 6:
Regions of Different Sizes

Representative saliency maps generated by our approach on the ImgSal data set.

that our saliency model is trained on the MIT1003 bench-
mark, which indicates that we incorporate no data set bias
in the saliency model. From the representative saliency maps
in Fig. 10, our approach demonstrates impressive performance
even for large salient objects without any presegmentation.
Actually, the proposed RCMs operate on flexible scales. In this
manner, salient targets with various sizes can be highlighted by
using flexible center and peripheral regions defined by random
rectangles. Even when the background becomes very complex
(e.g., category 4 and category 5), our model can still perfectly
pop out the salient target by selecting the most effective sub-
spaces for distractor inhibition. To sum up, the experimental
results on these six categories prove the generalization ability
of our approach as well as its effectiveness to handle various
scenarios.

To further quantize the performance of our approach in
processing images with obvious salient objects, we test
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Fig. 11. Representative results of our approach on MSRA10K. (a) Successful
examples. (b) Failures.
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our approach on a large salient object detection data set
MSRA10K. We first split images into superpixels, and the
saliency of each superpixel is set to the average saliency values
of the patches it contains. After that, SalCut algorithm [57]
is adopted to segment the accurate boundaries of salient
objects. With such a simple postprocessing, the F-Measure
score of our approach reaches 0.838, which is comparable with
GMR [58] (0.839), DSR [59] (0.833), and HC [10] (0.740),
but worse than RC [60] (0.875) and DRFI [61] (0.905).
To explain the results, we show some representative results,
including failure examples, in Fig. 11. From Fig. 11, we can
see that our approach can successfully highlight the small,
medium, and large salient objects when the salient object can
pop out as a whole [see Fig. 11(a)]. However, the proposed
framework, which is designed for fixation prediction, tends
to pop out only the most salient locations in many cases
[see Fig. 11(b)]. In these cases, it is difficult to pop out
the whole salient objects, even though human fixations are
successfully predicted. From these results, we can see that our
approach can facilitate the segmentation of the most salient
objects to some extent, since it can successfully locate the
most salient locations.

Beyond the performance on saliency prediction, we also
conduct the third experiment to address the concern on com-
putational complexity. Note that the main step in predicting
saliency of a testing image is the feature extraction, which will
be the input of a linear model for saliency map computation.

TABLE I
TIME COST IN OUR FEATURE EXTRACTION STEPS

# candidate subspaces  # selected subspaces time cost (s)

3 2 0.019
15 6 0.037
30 8 0.041
60 10 0.042
120 14 0.048
240 17 0.054
480 17 0.053
576 17 0.052

Therefore, we only test the speed of feature extraction when
using different numbers of principal components. Intuitively,
more principal components will generate more candidate sub-
spaces, making the time cost in the training process grow
linearly with the number of principal components. However,
after the training stage, only limited number of candidate
subspaces are selected while the others are discarded, making
the testing process extremely efficient.

To validate this, the third experiment consists of two parts:
1) how many subspaces are selected given different numbers of
candidate subspaces and 2) how long it will take on average
to extract features with the selected subspaces. The results
are presented in Table I. We can see that our algorithm
actually selects only the most discriminative 17 subspaces
(i.e., only 3%), even using 576 candidate subspaces (i.e., three
scales and 192 principal components). In the testing process,
only the RCMs in these 17 subspaces are computed with
the adaptive algorithm in Algorithm 2, achieving an efficient
testing process. With a 3.2-GHz CPU, our C++ implemen-
tation takes 0.052 s on average to extract all the required
features for each of the 235 testing images with a resolution
of 640 x 480. This indicates that our approach can be used
even to perform the nearly real-time analysis for live video
streams (e.g., 640 x 480 surveillance video).

Finally, we conduct the last experiment to validate the
influence of the number of training images. The objective
is to check whether 900 training images are sufficient to
train the model and whether the overall performance can be
further improved by incorporating more training data. In the
experiment, tenfold cross-validation is used as well. Each time,
training images are first randomly selected from the nine
training subsets (i.e., 90% training images), and the learned
model is tested on the testing subset (i.e., 10% testing images).
By repeating the training and testing processes for ten times,
we generate 1003 saliency maps as well. The experimental
results are shown in Fig. 12, from which we can see that even
with 100 training images, the performance already becomes
very impressive. This indicates that our approach can effec-
tively select the most discriminative subspaces by focusing on
separating targets and distractors. At the same time, by bring-
ing in more training images, the risk of overfitting becomes
lower, leading to higher AUCs. As the consequence, we can
safely assume that incorporating more training images can
improve performances. When the number of training images
grows from 100 to 900, the AUC score converges to 0.838,



which implies that 900 images are sufficient to train a robust
saliency model that can be generalized to various scenarios.

VI. CONCLUSION

This paper presents an approach that learns discrimina-
tive subspaces for image saliency estimation. The subspaces
learned from PCA can well reveal the distribution of the input
stimuli. Furthermore, we propose to compute the RCMs from
the projecting coefficient maps on these candidate subspaces
to ensure that targets with various sizes have the highest
responses while the distractors’ responses are greatly sup-
pressed. In the learning algorithm, we focus on separating tar-
gets and distractors instead of seeking a classifier that directly
recognizes targets and distractors. Experimental results show
that this mechanism is very effective in selecting a small
number of discriminative subspaces out of a large number of
candidates, which ensures the reliability and efficiency of the
proposed approach.

In the future work, we will try to expand the generation
of candidate subspaces by incorporating semantic subspaces
as well as the spectral information. We will also incorporate
our fixation prediction result with superpixel segmentations
to generate finer saliency maps. Moreover, we will exploit
various kinds of prior knowledge in subspace selection, which
can be derived from tasks, spatiotemporal information or
massive image statistics.
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