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Abstract— Image-based salient object detection (SOD) has been
extensively studied in past decades. However, video-based SOD is
much less explored due to the lack of large-scale video datasets
within which salient objects are unambiguously defined and
annotated. Toward this end, this paper proposes a video-based
SOD dataset that consists of 200 videos. In constructing the
dataset, we manually annotate all objects and regions over 7650
uniformly sampled keyframes and collect the eye-tracking data
of 23 subjects who free-view all videos. From the user data, we
find that salient objects in a video can be defined as objects
that consistently pop-out throughout the video, and objects with
such attributes can be unambiguously annotated by combining
manually annotated object/region masks with eye-tracking data
of multiple subjects. To the best of our knowledge, it is currently
the largest dataset for video-based salient object detection. Based
on this dataset, this paper proposes an unsupervised baseline
approach for video-based SOD by using saliency-guided stacked
autoencoders. In the proposed approach, multiple spatiotemporal
saliency cues are first extracted at the pixel, superpixel, and
object levels. With these saliency cues, stacked autoencoders
are constructed in an unsupervised manner that automatically
infers a saliency score for each pixel by progressively encoding
the high-dimensional saliency cues gathered from the pixel
and its spatiotemporal neighbors. In experiments, the proposed
unsupervised approach is compared with 31 state-of-the-art
models on the proposed dataset and outperforms 30 of them,
including 19 image-based classic (unsupervised or non-deep
learning) models, six image-based deep learning models, and
five video-based unsupervised models. Moreover, benchmarking
results show that the proposed dataset is very challenging and
has the potential to boost the development of video-based SOD.

Index Terms— Salient object detection, video dataset, stacked
autoencoders, model benchmarking.
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I. INTRODUCTION

THE rapid development of image-based salient object
detection (SOD) originates from the availability of

large-scale benchmark datasets [1], [2]. With these datasets,
it becomes feasible to construct complex models with
machine learning algorithms (e.g., random forest regres-
sor [3], bootstrap learning [4], multi-instance learning [5]
and deep learning [6]). Moreover, the availability of such
datasets enables fair comparisons between state-of-the-art
models [7], [8]. Large-scale datasets provide a solid foundation
for SOD and consistently guide the development of this
area.

Currently, SOD datasets are evolving to meet the increas-
ing demands in developing and benchmarking models. Some
researchers argue that images in early datasets such as ASD [2]
and MSRA-B [1] are relatively small and simple. They
extend such datasets in terms of size [9], [10] or complex-
ity [11]–[13]. Meanwhile, the concept of SOD has been
extended to RGBD images [14], image collections [15]–[17]
and videos [18]–[21]. Among these extensions, video-based
SOD has attracted great research interest since it re-defines the
problem from a spatiotemporal perspective. However, there is
still a lack of large-scale video datasets for comprehensive
model comparison, which prevent the fast growth of this
branch. For example, the widely used SegTrack dataset [22]
consists of only six videos with 21 to 71 frames per video,
while a recent dataset ViSal [21] contains only 17 videos
with 30 to 100 frames per video. In addition, the definition
of a salient object in videos is still not very clear (e.g.,
manually annotated foreground objects [23], class-specific
objects [21] or moving objects [24]). It is necessary to con-
struct a large video dataset with unambiguously defined salient
objects.

To address this issue, this paper proposes VOS, which is a
large-scale dataset with 200 indoor/outdoor videos for video-
based SOD (64 minutes and 116, 103 frames; see Fig. 1).
In constructing VOS, we collect two types of user data: the
eye-tracking data of 23 subjects who free-view all 200 videos,
and the masks of all objects and regions in 7, 650 uniformly
sampled keyframes annotated by another four subjects. With
these data, salient objects in a video can be unambiguously
annotated as the objects that consistently receive the highest
density of fixations throughout the video. By discarding pure-
background keyframes (defined as frames containing only
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Fig. 1. Representative scenarios in VOS. The 200 videos in VOS are grouped into two subsets according to the complexity of foreground, background and
motion, including VOS-E (easy subset, 97 videos) and VOS-N (normal subset, 103 videos).

widely recognized background regions such as blue sky, white
wall or green grassland) as well as keyframes in which salient
objects are partially occluded or divided into several disjoint
parts, we obtain 7, 467 keyframes with binary salient object
masks.

Based on this dataset, we propose an unsupervised model
for video-based SOD by constructing saliency-guided stacked
autoencoders. Different from the fixation prediction task,
which aims to roughly detect where the human being is
looking, and the image-based SOD task, which aims to
segment only the most spatially salient objects, the video-
based SOD task focuses on detecting and segmenting the
objects that consistently pop-out throughout a video from
a spatiotemporal perspective. Inspired by this, the proposed
approach first extracts multiple spatiotemporal saliency cues at
the pixel, superpixel and object levels. Stacked autoencoders
are then trained in an unsupervised manner to automatically
infer a saliency score for each pixel by progressively encoding
the high-dimensional saliency cues gathered from the pixel
and its spatiotemporal neighbors. In the comprehensive model
benchmarking on VOS, the proposed approach is compared
with 31 state-of-the-art models and outperforms 30 of them.
Moreover, the benchmarking results show that VOS is a
challenging dataset with the potential to greatly boost the
development of this area.

Our main contributions are summarized as follows: 1) we
propose a large and challenging dataset for video-based SOD,
which can be useful for the development of this area; 2) we
propose saliency-guided stacked autoencoders for video-based
SOD, which outperform 30 state-of-the-art models; and 3) we
provide a comprehensive benchmark of our approach and
massive state-of-the-art models, which reveals several key
challenges in video-based SOD and further validates the
usefulness of the proposed dataset.

The rest of this paper is organized as follows: Section II
reviews related works and Section III presents a new dataset.
In Section IV, we propose saliency-guided stacked autoen-
coders for video-based SOD. Section V benchmarks the pro-
posed model and the state-of-the-art models, and the paper is
concluded in Section VI.

II. RELATED WORK

Video-based SOD is closely related to image-based SOD,
foreground/primary object detection and moving object seg-
mentation. In this section, we will review the most relevant
datasets and models from these areas.

A. Datasets

1) SegTrack [22] is a popular dataset for evaluating the
segmentation accuracy in video tracking. It contains six videos
about animals and humans with 244 frames in total, and the
videos are intentionally collected with predefined challenges
such as color overlap between target and background appear-
ance, inter-frame motion and change in target shape. Only one
foreground object is annotated per frame.

2) SegTrack V2 [27] enhances SegTrack by adding addi-
tional annotations of foreground objects for the six videos in
SegTrack. Moreover, eight new videos are carefully chosen to
cover additional challenges such as motion blur, appearance
change, complex deformation, slow motion, occlusion and
multiple adjacent/interacting objects. In total, SegTrack V2
contains 14 videos about birds, animals, cars and humans with
1, 065 densely annotated frames.

3) Freiburg-Berkeley Motion Segmentation (FBMS) [24],
[28] is designed for motion segmentation (i.e., segmenting
regions with similar motion). It was first proposed in [24] with
26 videos, and then Ochs et al. [28] extended the dataset with
another 33 videos. In total, this dataset contains 59 videos
with 720 sparsely annotated frames with typical challenges
such as multiple objects, various motion types, occlusion and
changing lighting conditions. Although the dataset is much
larger than SegTrack and SegTrack V2, the scenarios it
covers are still far from sufficient [23]. Moreover, moving
objects are not equivalent to salient objects, especially in a
scene with complex content.

4) DAVIS [23] is a video dataset about humans, animals,
vehicles, objects and actions (50 videos, with 3, 455 densely
annotated frames). Each video has Full HD 1080p resolution
and lasts approximately 2 to 4 seconds. Typically, a video
contains one foreground object or two spatially connected



TABLE I

COMPARISON BETWEEN VOS (SUBSETS: VOS-E AND VOS-N) AND 12 REPRESENTATIVE IMAGE/VIDEO OBJECT SEGMENTATION DATASETS.
THE COLUMNS #AVG. OBJ. AND OBJ. AREA (%) ARE THE AVERAGE NUMBER AND AREA OF FOREGROUND

OBJECTS PER IMAGE OR FRAME, RESPECTIVELY

objects (an object may be split into many small regions due
to occlusion), covering challenges such as occlusions, motion
blur and appearance changes.

5) ViSal [21] is a pioneering video dataset that intends to
provide a deeper exploration of video-based SOD. It contains
17 videos about humans, animals, motorbikes, etc. Each
video contains 30 to 100 frames, in which salient objects
are annotated according to the semantic classes of videos.
In other words, this dataset assumes that salient objects are
equivalent to the primary objects within the videos annotated
by semantic tags. Major challenges in these videos include
complex color distributions, highly cluttered backgrounds,
various object motion patterns, rapid topology changes and
camera motion.

To facilitate the comparison between these datasets and
our VOS dataset, we show in Table I some dataset sta-
tistics. Moreover, we list the details of seven image-
based SOD datasets to provide an intuitive comparison
between image- and video-based SOD. Generally, the pre-
vious datasets reviewed above have greatly boosted the
research in video object segmentation, but have several
drawbacks.

First, these datasets are slightly smaller for modern learning
algorithms such as Convolutional Neural Networks (CNN).
As shown in Table I, the numbers of annotated frames in most
previous video datasets are much smaller than those in the
image-based SOD datasets and VOS. Although thousands of
frames in SegTrack V2 and DAVIS are densely annotated,
the rich redundancy in consecutive frames may increase the
over-fitting risk in model training.

Second, videos in some datasets are selected to maximally
cover predefined challenges in video object segmentation (e.g.,
SegTrack and SegTrack V2). However, such intentionally
selected videos may make these datasets not very “realistic”
(i.e., different from the videos in real-world scenarios). More-
over, such datasets may favor models that are particularly
designed to “over-fit” the limited scenarios. In contrast, our
VOS dataset is much larger, so the over-fitting risk can be
largely alleviated.

Third, foreground objects in previous datasets are often
manually annotated by only one or several annotators, which
may result in the incorporation of strong subjective bias into
these datasets. For example, in a video with both a dog and
monkey, only the monkey is annotated in SegTrack, while
SegTrack V2 has the dog annotated as well. Moreover, manual
annotations from different subjects often conflict with one
another [29] and cause ambiguity. To alleviate such ambiguity,
previous works such as [30]–[32] have tried to locate salient
targets by averaging rectangles that were manually annotated
by 23 subjects [30] or collecting human fixations via an eye-
tracking apparatus [31], [32]. However, these datasets cannot
be directly used in video-based SOD due to a lack of pixel-
wise annotations of salient objects. Pixel-wise annotation is the
most time-consuming step in constructing video-based SOD
datasets.

To sum up, existing datasets are insufficient for benchmark-
ing video-based SOD models due to the limited numbers of
videos as well as the ambiguous definition and annotation
processes of salient/foreground/moving objects. To further
boost the development of this area, it is necessary to construct
a large-scale dataset that covers a wide variety of real-world
scenarios and contains salient objects that are unambiguously
defined and annotated.

B. Models

Hundreds of image-based SOD models [3], [33]–[37] have
been proposed in the past decade. With the development of
deep learning methodology and the availability of large-scale
datasets [10], [25], [38], many deep models [6], [39]–[41]
have been proposed for image-based SOD. For exam-
ple, Han et al. [42] proposed multi-stream stacked denoising
autoencoders that can detect salient regions by measuring the
reconstruction residuals that reflect the distinction between
background and salient regions. He et al. [43] adopted CNNs
to characterize superpixels with hierarchical features to detect
salient objects on multiple scales, and such superpixel-based
saliency computation was used by [25] and [44] as well.



Considering that the task of fixation prediction is closely
related to SOD, a unified deep network was proposed in [45]
for simultaneous fixation prediction and image-based SOD.

The state-of-the-art deep SOD models often adopt recurrent
frameworks that can achieve impressive performance. For
example, Liu and Han [46] adopted hierarchical recurrent
CNNs to progressively refine the details of salient objects.
In [47], a coarse saliency map was first generated by using
the convolution-deconvolution networks. Then, it was refined
by iteratively enhancing the results in various sub-regions.
Wang et al. [48] iteratively delivered the intermediate predic-
tions back to the recurrent CNNs to refine saliency maps.
In this way, salient objects can be gradually enhanced, while
distractors can be suppressed.

Compared with image-based SOD, video-based SOD is less
explored due to the lack of large video datasets. For example,
Liu et al. [49] extended their image-based SOD model [1]
to the spatiotemporal domain for salient object sequence
detection. In [50], visual attention (i.e., the estimated fixation
density) was used as prior knowledge to guide the segmenta-
tion of salient regions in video. Rahtu et al. [18] proposed the
integration of local contrast features in illumination, color and
motion channels with a statistical framework. A conditional
random field was then adopted to recover salient objects from
images and video frames. Due to the lack of large-scale
benchmarking datasets, most of these early approaches only
provide qualitative comparisons, and only a few works such
as [49] have provided quantitative comparisons on a small
dataset within which salient objects are roughly annotated with
rectangles.

To conduct quantitative comparisons in single-video-based
SOD, Bin et al. [51] manually annotated the salient objects
in 10 videos with approximately 100 frames per video. They
also proposed an approach to detect temporally coherent
salient objects using regional dynamic contrast features in the
spatiotemporal domains of color, texture and motion. Their
approach demonstrated impressive performance in processing
videos with only one salient object. In [52], Papazoglou
and Ferrari proposed an approach for the fast segmenta-
tion of foreground objects from background regions. They
first estimated an initial foreground map with respect to the
motion information, which was then refined by building the
foreground/background appearance models and enhancing
the spatiotemporal smoothness of foreground objects over
the whole video. The main assumption required by their
approach was that foreground objects should move differently
from the surrounding background in a large fraction of the
video. Wang et al. [53] proposed an unsupervised approach
for video-based SOD. In their approach, frame-wise saliency
maps were first generated and refined with respect to the
geodesic distances between regions in the current frame and
subsequent frames. After that, global appearance models and
dynamic location models were constructed so that the spatially
and temporally coherent salient objects could be segmented
by using an energy minimization framework. In their later
work [21], Wang et al. proposed the utilization of the inter-
frame and intra-frame information in a gradient flow field.
By extracting the local and global saliency measures, an

energy function was then adopted to enhance the spatiotem-
poral consistency of the output saliency maps.

In addition to the impressive performance, these single-
video-based approaches have provided us with an intuitive
definition of salient objects: salient objects in a video should
be spatiotemporally consistent and visually distinct from back-
ground regions. However, in real-world scenarios, assumptions
such as color/texture dissimilarity and motion irregularity may
not always hold. A more general definition of salient objects
in a video is required to guide the annotation and detection
processes.

Beyond single-video-based approaches, some approaches
extend the idea of image co-segmentation to the video domain.
For example, Chiu and Fritz [54] proposed a generative model
for multi-class video co-segmentation. A global appearance
model was learned to connect the segments from the same
class to segment the foreground targets shared by different
videos. Fu et al. [20] proposed to detect multiple foreground
objects shared by a set of videos. Category-independent object
proposals were first extracted, and a multi-state selection
graph was then adopted to handle multiple foreground objects.
Although video co-segmentation provides an interesting new
direction for studying video-based SOD, detecting salient
objects in a single video is still the most common requirement
in many real-world applications, such as video compres-
sion [55], summarization [56], retrieval [57] and editing [58],
as well as action recognition [59].

III. A LARGE-SCALE DATASET FOR VIDEO-BASED SOD

A good dataset should cover many real-world scenarios and
the annotation process should contain little subjective bias.
In this section, we will introduce the details of the dataset
construction process and discuss how salient objects can be
unambiguously defined and annotated in videos.

A. Video Collection

We first collect hundreds of long videos from the Inter-
net (e.g., recommended videos from video-sharing websites
such as YouTube) and volunteers. Note that no instruction
is given on what types of videos are required since we
aim to collect more “realistic” daily videos. After that, we
randomly sample short clips from long videos and keep only
the clips that contain objects in most frames. Finally, we
obtain 200 indoor/outdoor videos that last 64 minutes in total
(116, 103 frames at 30fps). These videos are grouped into
two subsets according to the content complexity (determined
through voting by the authors):

1) VOS-E: This subset contains 97 easy videos (27 minutes,
49, 206 frames, 83 to 962 frames per video). As shown
in Fig. 1, a video in this subset usually contains obvious
foreground objects with many slow camera motion types. This
subset serves as a baseline to explore the inherent relationship
between image- and video-based SOD.

2) VOS-N: This subset contains 103 normal videos
(37 minutes, 66, 897 frames, 710 to 2, 249 frames per video).
As shown in Fig. 1, videos in this subset contain complex
or highly dynamic foreground objects, dynamic or cluttered



Fig. 2. Masks of objects and regions annotated by four subjects. Holes are
filled up to speed up the annotation process (e.g., the key ring in the first row),
and multiple objects will be assigned the same labels throughout the video
if they cannot be easily separated in certain frames (e.g., the fighting bears
and cats) or difficult to be re-identified (e.g., the jelly fish which frequently
appears and disappears near screen borders).

background regions, etc. This subset is very challenging and
can be used to benchmark models in realistic scenarios.

B. User Data Collection

The manual annotation of salient objects often generates
ambiguity and subjective bias in complex scenes. Inspired by
the solution used in [13], we collect two types of user data,
namely, object masks and human fixations, to alleviate the
ambiguity in defining and annotating salient objects.

1) Object Masks: Four subjects (2 males and 2 females,
aged between 24 and 34) manually annotate the boundaries of
all objects and regions in video frames. Since it consumes too
much time to annotate all frames, we uniformly sample only
one keyframe out of every 15 frames and manually annotate
the 7, 650 keyframes. In the annotation, an object maintains
the same label throughout a video, and the holes in objects
are filled to speed up the annotation (e.g., the background
region inside the key ring in Fig. 2). Since moving objects may
merge or split several times in a short period, it is difficult to
consistently assign different labels to them (e.g., the fighting
bears and cats in Fig. 2), we assign the same label to objects
if they become indistinguishable in certain frames (e.g., the
bears and cats in Fig. 2) or difficult to re-identify (e.g., the
jelly fish in Fig. 2 frequently appear and disappear near screen
borders). Finally, regions smaller than 16 pixels are ignored
and we obtain the accurate boundaries of 53, 478 objects and
regions.

2) Human Fixations: Twenty-three subjects (16 males and
7 females, aged between 21 and 29) participate in the eye-
tracking experiments. None of them participate in annotating
the object/region masks. Each subject is asked to free-view
all 200 videos on a 22-inch color monitor with a resolution of
1680×1050. A chin rest is utilized to reduce head movements
and enforce a viewing distance of 75 cm. Considering that the
non-stop watching of 200 videos (64 minutes) would be very
tiring, we randomly divide videos into subgroups and adopt
an interlaced schedule for different subjects who free-view
the same subgroup of videos. In this manner, each subject
has sufficient time to rest after watching a small collection of
videos, making the eye-tracking data more reliable. During the

Fig. 3. Human fixations (red dots) of 23 subjects on consecutive keyframes.
These fixations are insufficient to directly annotate salient objects frame by
frame. (a) Insufficient fixations to separate salient objects and distractors;
(b) Fixations fall outside small objects; (c) Fixations distracted by visual
surprises; (d) Salient objects occluded by background regions.

free-viewing process, an eye-tracking apparatus with a sample
rate of 500 Hz (SMI RED 500) is used to record various types
of eye movements. Finally, we keep only the fixations and
denote the set of eye positions on a video V as FV , in which a
sampled eye position f is represented by a triplet (x f , y f , t f ).
Note that x f and y f are the coordinates of f and t f is the time
stamp at the start of f (an eye position sampled by the 500 HZ
eye-tracker lasts approximately two milliseconds; see Fig. 3
for some examples).

C. Definition and Annotation of Salient Objects in Video

In a simple scene, salient objects can be manually annotated
without much ambiguity. However, in a complex scene, there
may exist several candidate objects, and different subjects may
have different biases in determining which objects are salient.
To alleviate the subjective bias, the fixations of multiple
subjects can be used to find salient objects. For example,
Li et al. [13] collected fixations from eight subjects who free-
viewed the same image for 2 seconds. Then, salient objects
were defined as the objects that received the highest number
of fixations. This solution provides a less ambiguous definition
of salient objects in images, but may fail on videos due to four
reasons:

1) Insufficient Viewing Time: The viewing time of a frame
(e.g., 33 ms) is much shorter than that of an image. As a
result, the fixations received by a frame are often insufficient
to fully distinguish the most salient objects, especially when
there exist multiple candidates in the same video frame (e.g.,
the cars and bears in Fig. 3 (a)).

2) Inaccurate Fixations: Human fixations may fall outside
moving objects and small objects (e.g., the fast moving aircraft
in Fig. 3 (b)).

3) Rapid Attention Shift: Human attention can be suddenly
distracted by visual surprises for a short period. In this case,
some distractor stimuli, which are not the subject of the video,
will be recognized as salient if only the fixations in this short
period are considered in defining salient objects (e.g., the black
region in Fig. 3 (c)).



4) Background-Only Frames: Some frames contain no obvi-
ous salient object. If salient objects are defined according to
the fixations received in only these frames, background regions
in these frames will be mistakenly annotated as salient (e.g.,
the girl is occluded in Fig. 3 (d)).

For these reasons, it is difficult to directly define and
annotate salient objects separately on each frame. Inspired by
the idea of co-saliency [20], [54], we propose to define salient
objects at the scale of whole videos. That is, salient objects
in videos are defined as the objects that consistently receive
the highest fixation densities throughout a video. The highest
density of fixations is used in defining salient objects in videos,
rather than the highest number of fixations. In this manner, we
can avoid mistakenly assigning high saliency values to large
background regions when salient objects are small (e.g., the
aircraft in Fig. 3 (b)).

D. Generation of Salient Object Masks

Based on the proposed definition, we can generate masks
of salient objects for each video. We first compute the fixation
density at each object in the manually annotated keyframes.
Considering that the fixations received by each keyframe are
very sparse, we consider the fixations that are recorded in a
short period after the keyframe is displayed. Let It ∈ V be a
frame presented at time t and O ∈ It be an annotated object.
We measure the fixation density at O, denoted as S0(O), as

S0(O) = 1

‖O‖
∑

f ∈FV

δ(t f > t)

·
⎛

⎝
∑

p∈O
Dist( f, p) · exp

(
− (t f − t)2

2σ 2
t

)⎞

⎠, (1)

where p is a pixel at (x p, yp) and ‖O‖ is the number of pixels
in O. The indicator function δ(t f > t) equals 1 if t f > t
holds and 0 otherwise. Dist( f, p) measures the spatial distance
between the fixation f and the pixel p, which can be computed
as

Dist( f, p) = exp

(
− (x f − x p)

2 + (y f − yp)
2

2σ 2
s

)
. (2)

From Eq. (1) and Eq. (2), we can see that the influence of the
fixation f on the fixation density at the object O gradually
decreases when the spatial or temporal distances between f
and pixels in O increase. This influence is controlled by σs and
σt which are empirically set to 3% of the video width (or video
height if it is larger than the width) and 0.1 s, respectively.

Based on the fixation density S0(O), we can compute its
saliency score S(O) from the global perspective:

S(O) =
∑

It∈V δ(O ∈ It ) · S0(O)
∑

It ∈V δ(O ∈ It )
. (3)

In Eq. (3), the saliency of an object is defined as its average
fixation density throughout the video. After that, we select the
objects with saliency scores above an empirical threshold of 50
(or the object with the highest saliency score if it is smaller
than 50). Note that such a threshold is empirically selected
based on the subjectively assessed object completeness as

Fig. 4. Representative keyframes and masks of salient objects.

Fig. 5. The average annotation maps of 6 datasets.

well as the consistency between segmented salient objects and
all recorded fixations. That is, we first overlay the recorded
fixations onto all video frames to infer which objects attract
the majority of subjects in the eye-tracking experiments. After
that, we generate salient objects by enumerating a set of
predefined thresholds (e.g., 25, 50, 75, 100, 128, 150 and 200)
or adaptive thresholds (e.g., max, median, mean and twice the
mean). We find that the fixed threshold of 50 provides the
best subjective impression in segmenting the most attractive
objects according to the fixations of 23 subjects. At this
threshold, we obtain a set of salient objects for each video,
represented by a sequence of binary masks at keyframes.
In particular, a keyframe that contains only background or
a salient object that splits into several disconnected parts due
to the occlusion of background distractors will be discarded.
Finally, we obtain 7, 467 binary masks of keyframes (3, 236
for the 97 videos in VOS-E and 4, 231 for the 103 videos in
VOS-N). Representative masks of salient objects can be found
in Fig. 4.

E. Dataset Statistics

To reveal the main characteristics of VOS, we show in Fig. 5
the average annotation maps (AAMs) of VOS-E, VOS-N,
VOS and three image datasets (i.e., ASD [2], ECSSD [11]
and DUT-O [10]). Similar to [8], the AAM of an image-based
SOD dataset is computed by 1) resizing all ground-truth masks
from the dataset to the same resolution, 2) summing the resized
masks pixel by pixel, and 3) normalizing the resulting map
to a maximum value of 1.0. For a video-based SOD dataset
(e.g., VOS-E, VOS-N and VOS), an AAM is first computed
over each video, while the AAMs from all videos are fused
following the same three steps to obtain the final AAM. In this
manner, we can provide a better view of the distributions of
salient objects in different videos (otherwise, the AAMs will
be heavily influenced by long videos).

From Fig. 5, we can see that the distributions of salient
objects in VOS and its two subsets are both center-biased,



Fig. 6. Histograms of the number and area of salient objects.

and the degree of center bias is a little stronger than in ASD,
ECSSD and DUT-O. This is mainly because photographers
often have a strong tendency to place salient targets near the
center of the view when taking videos. Moreover, in Eq. (2), a
Gaussian blob is constructed at each fixation location (x p, yp).
The saliency of a pixel is then computed by summing various
blobs, which will add some center bias to the salient objects
since center pixels are more likely to have more neighboring
fixations than border pixels. This problem is also faced in
many image-based SOD research works that make use of an
eye-tracking apparatus. The existence of center bias may imply
that image-based and video-based SODs are inherently related,
and it is possible to transfer some useful saliency cues from
the spatial domain to the spatiotemporal domain (e.g., the
background prior [3], [37] obtained from the boundary pixels).

Moreover, Figure 6 shows the histograms of the number
and area of salient objects. We see that the number and area
of salient objects in VOS are similar to those in DUT-O.
This implies that VOS, like the DUT-O dataset, is very chal-
lenging, as it reflects many realistic scenarios. In particular,
most keyframes from VOS-E contain only one salient object,
similar to the famous dataset SegTrack. However, the sizes
of salient objects in VOS-E are distributed almost uniformly
among the Small (31.1%), Medium (30.1%), Large (20.6%)
and Very Large (18.3%) categories, making VOS-E more
challenging than SegTrack. Considering that the 97 videos in
VOS-E, like those in SegTrack, contain varying numbers of
distractors and cover many camera motion types, we believe
VOS-E can serve as a good baseline dataset to benchmark
video-based SOD models.

IV. A BASELINE MODEL FOR VIDEO-BASED SOD WITH

SALIENCY-GUIDED STACKED AUTOENCODERS

A. The Framework

To construct a baseline model for VOS, we propose an
unsupervised approach that learns saliency-guided stacked

autoencoders. The framework of the proposed approach is
shown in Fig. 7. We first transform each frame from VOS
into several color spaces and extract object proposals as well
as the motion information (e.g., optical flow). After that, we
extract three spatiotemporal saliency cues from each frame at
the pixel, superpixel and object levels, and such cues reveal
the presence of salient objects from different perspectives.
Considering that salient objects are often spatially smooth and
temporally consistent in consecutive frames, we characterize
each pixel with a high-dimensional feature vector, which
consists of the saliency cues collected from the pixel, its spatial
neighbors and the corresponding pixel in the subsequent frame.

With the guidance of saliency cues in the high dimensional
feature vector at each pixel, stacked autoencoders can be
learned in an unsupervised manner, which contain only one
hidden node in the last encoding layer (see Fig. 7). Since the
saliency cues within a pixel and its spatiotemporal neighbors
can be well reconstructed from the output of this layer, we
can safely assume that the degree of saliency at each pixel
is strongly related to the output score. By computing the
output scores and the linear correlation coefficient with the
input saliency cues, we can derive an initial saliency map for
each frame that is spatially smooth and temporally consistent.
Finally, several simple post-processing operations are applied
to further enhance salient objects and suppress distractors.

B. Extracting Multi-Scale Saliency Cues

To extract saliency cues, we first resize a frame It to the
maximum side length of 400 pixels and convert it to the Lab
and HSV color spaces. After that, we estimate the optical
flow [60] between It and It+1 and compute the inter-frame
flicker as the absolute in-place difference of intensity between
It and It−1. For the sake of simplification, we use a space
XYT, which is formed by combining the optical flow and the
flicker to represent the variations along the horizontal, vertical
and temporal directions. Finally, each frame is represented
by 12 feature channels from the RGB, Lab, HSV and XYT
spaces. Based on these channels, we extract three types of
saliency cues:

1) Pixel-Based Saliency: To efficiently extract the pixel-
based saliency, we utilize the unsupervised algorithm proposed
in [37] that computes the minimum barrier distance from
a pixel to the image boundary (one pixel width). In the
computation, we discard the Hue channel since the difference
between hue values cannot always reflect the color contrast.
Moreover, we also discard the RGB channels and the Value
channel in HVS, which are redundant to the other channels.
For the remaining four spatial and three temporal channels, the
minimum barrier distances from all pixels to the image bound-
ary are separately computed over each channel. Such distances
are then summed across channels to initialize a pixel-based
saliency map Spix

t . Moreover, we extract a backgroundness
map as in [37] and multiply it with Spix

t to further enhance
salient regions and suppress probable background regions.
Finally, we conduct a morphological smoothing step over the
pixel-based saliency map to smooth Spix

t while preserving
the details of significant boundaries. As shown in Fig. 8 (c),



Fig. 7. The framework of the proposed saliency-guided stacked autoencoders.

the pixel-based saliency can be efficiently computed but is
sensitive to noise.

2) Superpixel-Based Saliency: In image-based SOD, super-
pixels are often used as the basic units for feature extraction
and saliency computation since they contain much more
structural information than pixels. In this study, we adopt
the approach proposed in [61] to extract the superpixel-based
saliency in an unsupervised manner. This approach first divides
a frame It into superpixels, based on which the sparse and
low-rank properties are utilized to decompose the feature
matrix of superpixels to obtain their saliency scores. In this
process, prior knowledge on location (i.e., center bias), color
and background is used to refine the superpixel-based saliency.
Finally, the saliency value of a superpixel is mapped back to all
pixels it contains to generate a saliency map Ssup

t . As shown in
Fig. 8 (d), the superpixel-based saliency can be used to detect
a large salient object as a whole (e.g., the tissue in the third
row of Fig. 8 (d)).

3) Object-Based Saliency: Inspired by the construction
process of VOS, we adopt the Multiscale Combinatorial
Grouping algorithm [62] to generate a set of object proposals
for the frame It and estimate an objectness score for each pro-
posal. After that, we adopt the unsupervised fixation prediction
model proposed in [63] to generate three fixation density maps
in the Lab, HSV and XYT spaces. Let O be the set of objects
with the highest objectness scores and Flab, Fhsv and Fxyt be
the three fixation density maps. The object-based saliency at
a pixel p can be computed as

Sobj
t (p) =

∑

O∈O

δ(p ∈ O)· Flab(O) · Fhsv (O) · Fxyt (O), (4)

where δ(p ∈ O) is an indicator function that equals 1 if
p ∈ O and 0 otherwise. Let O be the set of objects used for
computing the object-based saliency maps. We set ‖O‖ = 50
in the experiments. Flab(O) (or Fhsv(O), Fxyt(O)) indicates
the ratio of fixations received by O over the fixation density
map Flab, which is computed as:

Flab(O) =
∑

p∈O Flab(p)
∑

p∈It
Flab(p)

. (5)

As shown in Fig. 8 (e), the object-based saliency cues can be
used to extract whole large salient objects, but the extracted
regions often contain the background regions near the object.

C. Learning Stacked Autoencoders

Given the saliency cues, we have to estimate a non-negative
saliency score for each pixel, which, statistically, has a positive
correlation with the saliency cues. Moreover, as stated in many
previous works [21], [52], [53], the estimated saliency scores
should have the following attributes:

1) Spatial Smoothness: Similar pixels that are spatially
adjacent to each other should have similar saliency scores.

2) Temporal Consistency: Corresponding pixels in adjacent
frames should have similar saliency scores so that salient
objects can be consistently detected throughout a video.

To develop a model with such attributes, we train stacked
autoencoders that take saliency cues at a pixel and its spa-
tiotemporal neighbors as the input, so that the spatial smooth-
ness and temporal consistency of the predicted saliency scores
can be guaranteed. Considering the computational efficiency,
for each pixel, we adopt its eight spatial neighbors and only
one temporal neighbor in the subsequent frame defined by the
optical flow. Each pixel is then represented by a feature vector
with 3 × 10 = 30 saliency cues.

With the guidance of the high-dimensional saliency cues,
we collect the feature vectors from N = 500, 000 randomly
selected pixels in VOS, which are denoted as {x1

n}N
n=1. With

these data, we train stacked autoencoders with T encoding
layers and the same number of decoding layers with logistic
sigmoid transfer functions. In the training process, no ground-
truth data are used. The t th encoding layer ft , t ∈ {1, . . . , T },
and its corresponding decoding layer f̂t are trained by mini-
mizing

min
ft , f̂ t

1

N

N∑

n=1

‖xt
n − f̂t

(
ft (xt

n)
) ‖2

2 + λw�w + λs�s, (6)

where �w is an �-2 regularization term that can be used to
penalize the �-2 norm of the weights in the encoding and
decoding layers (we empirically set λw = 0.001 in this study).



�s is a sparsity regularizer, which is defined as the Kullback-
Leibler divergence between the average output of each neuron
in ft and a predefined score ρ (we empirically set ρ = 0.05
and λs = 1.0).

In minimizing Eq. (6), the first encoding layer takes the
sampled feature vectors of saliency cues as the input data,
while other encoding layers take the output of previous
encoding layers as the input. That is, in training the t th
encoding/decoding layer, we have

xt
n = N

(
ft−1(xt−1

n )
)

, ∀ t ∈ {2, . . . , T }, (7)

where N (·) denotes the normalization operation that forces
each dimension of the input data that enters an encoding layer
to fall in the same dynamic range of [−1, 1]. In this study,
we use T = 4 encoding layers with 15, 7, 3 and 1 neurons
in each layer, and each layer is trained for 100 epochs. Note
that the T th layer contains only one neuron, and by using
its output score the input saliency cues within a pixel and
its spatiotemporal neighbors can be well reconstructed by
the decoding layers. As a result, we can safely assume that
such output scores {xT +1

n }N
n=1 are closely related to the input

saliency cues {x1
n}N

n=1, and the degree of correlation c can
be measured by averaging the linear correlation coefficients
between {xT +1

n }N
n=1 and every dimension of {x1

n}N
n=1. As a

result, the saliency score of a pixel p, given its feature
vector vp , which contains the saliency cues from p and its
spatiotemporal neighbors, can be computed as

S(p) = sign(c) · fT (N (· · · f1(N (vp)))). (8)

After computing the saliency score for each pixel with Eq. (8),
we can initialize a saliency map for each frame in VOS
with the saliency values normalized to [0, 255]. As shown in
Fig. 8 (f), such a saliency map already performs impressively
in highlighting salient objects and suppressing distractors.
To further enhance salient objects and suppress distractors,
we perform three post-processing operations:

1) Apply temporal smoothing between adjacent frames to
reduce the inter-frame flicker. We adopt a Gaussian filter
with a width of 3 and σ = 0.75.

2) Enhance the foreground/background contrast by using
the sigmoid function proposed in [37].

3) Binarize the saliency map with the average value of
the whole saliency map and suppress the connected
components that are extremely small.

As shown in Fig. 8 (g), these post-processing operations can
generate compact and precise salient objects. Note that opera-
tions such as center-biased re-weighting and spatial smoothing
are not adopted here because the autoencoders, which have
been learned in an unsupervised manner over a large-scale
dataset, already have the capability to accurately detect various
types of salient objects, regardless of their positions and sizes.

V. EXPERIMENTS

In this section, we compare the proposed Saliency-guided
Stacked Autoencoders (SSA) with the state-of-the-art models
on VOS. The main objectives are two-fold: 1) validate the
effectiveness of the dataset VOS and the baseline model

Fig. 8. Saliency cues and the estimated saliency maps. (a) Frames,
(b) ground-truth, (c) pixel-based saliency, (d) superpixel-based saliency,
(e) object-based saliency, (f) initial saliency maps obtained by the
saliency-guided stacked autoencoders, (g) final saliency maps obtained after
post-processing.

TABLE II

MODELS FOR BENCHMARKING (SYMBOLS: [I] FOR IMAGE-BASED,
[V] FOR VIDEO-BASED; [C] FOR CLASSIC UNSUPERVISED OR

NON-DEEP LEARNING, [D] FOR DEEP LEARNING,
[U] FOR UNSUPERVISED)

SSA, and 2) provide a comprehensive benchmark to reveal
the key challenges in video-based SOD. This section will
first introduce the experimental settings and then discuss the
results.

A. Settings

As shown in Table II, 32 state-of-the-art models, including
the proposed baseline model SSA, are tested on the VOS
dataset (19 image-based classic unsupervised or non-deep
learning models, seven image-based deep learning models, and
six video-based unsupervised models). Similar to many image-
based SOD works, we also adopt Recall, Precision, Fβ and
Mean Absolute Error (MAE) as the evaluation metrics. Let G
be the ground-truth binary mask of a keyframe and S be the
saliency map predicted by a model. The MAE score can be
computed as the average absolute difference between all pixels
in S and G to directly reflect the visual difference [8], [44].
Moreover, the Recall and Precision scores can be computed by



TABLE III

PERFORMANCE BENCHMARKING OF OUR APPROACH AND 31 STATE-OF-THE-ART MODELS ON VOS AND ITS TWO SUBSETS VOS-E AND VOS-N. TOP
THREE SCORES IN EACH COLUMN ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY. SYMBOLS OF MODEL CATEGORIES: [I+C] FOR

IMAGE-BASED CLASSIC UNSUPERVISED OR NON-DEEP LEARNING, [I+D] FOR IMAGE-BASED DEEP LEARNING,
[V+U] FOR VIDEO-BASED UNSUPERVISED

converting S into a binary mask M and comparing it with G:

Recall = #(Non-zeros in M ∩ G)

#(Non-zeros in G)
,

Precision = #(Non-zeros in M ∩ G)

#(Non-zeros in M)
. (9)

Intuitively, the overall performance of a model on VOS can
be assessed by directly computing the average Recall and
Precision over all keyframes. However, this solution will over-
emphasize the performance on long videos and ignore the
performance on short videos (e.g., a video with 100 keyframes
will overwhelm a video with only 10 keyframes). To avoid
that, we first compute the average Recall, Precision and MAE
separately over each video. Then, the mean values of the
average Recall, Precision and MAE are computed over all
videos. In this manner, the Mean Average Recall (MAR),
Mean Average Precision (MAP) and MAE can well reflect the
performance of a model by equivalently considering its per-
formances over all videos. Correspondingly, Fβ is computed
by fusing MAR and MAP to quantify the overall performance:

Fβ = (1 + β2) · MAP · MAR

β2 · MAP + MAR
. (10)

Here, we set β2 = 0.3, which is the value used in most existing
image-based models [2], [8] for performance evaluation.

Another problem in assessing models with MAP, MAR and
Fβ is determining how to turn a gray-scale saliency map S into
a binary mask M . Similar to image-based SOD, we adopt the
adaptive threshold proposed in [2], which is computed as twice
the average value of S, to generate a binary mask from each
saliency map. Note that we set this threshold to the maximal
saliency value if it exceeds the maximal value. In this manner,
unique MAR, MAP and Fβ scores can be generated to measure
the overall performance of a model.

B. Model Benchmarking

The performances of the baseline model SSA and the
other state-of-the-art models on VOS-E, VOS-N and VOS
are illustrated in Table III. Some representative results of the
best models from the three model categories are shown in
Fig. 9, including SMD (image-based classic unsupervised or
non-deep learning), DHSNet (image-based deep learning) and
SSA/FST (video-based unsupervised). Based on Table III and
Fig. 9, we conduct three comparisons:

1) Comparisons Between SSA and the Other Mod-
els: From Table III, we can see that SSA outperforms



Fig. 9. Representative results of the best models from the three model categories. The four models are SMD (image-based classic unsupervised or non-deep
learning), DHSNet (image-based deep learning) and SSA/FST (video-based unsupervised).

30 state-of-the-art models in terms of Fβ , including six image-
based deep learning models (except DHSNet) and five video-
based models. Note that no ground-truth data in any form has
been used in SSA, while the other deep models often make use
of VGGNet [73] pre-trained on a massive number of images
with semantic tags, and fine-tune their SOD models on thou-
sands of images with manually annotated salient objects (e.g.,
DHSNet starts with VGGNet and then takes 9500 images from
two datasets for model fine-tuning). Even in such a challenging
setting, the unsupervised shallow model SSA, which only
utilizes four layers of stacked autoencoders, still outperforms
all deep models in terms of MAP, and outperforms the other

six deep learning models (LEGS, MCDL, MDF, ELD, DCL
and RFCN) in terms of Fβ score. This result validates the
effectiveness of the saliency-guided autoencoding scheme in
video-based SOD.

In addition, on VOS and its two subsets, SSA always has the
best Precision (MAP = 0.764 on VOS), while its MAR scores
are even lower than those of some unsupervised image-based
models such as MB+ and RBD. This may be because such
models adopt bottom-up frameworks that tend to detect almost
all regions that are different from the predefined context (i.e.,
image boundaries in MB+ and RBD), leading to high Recall
rates. However, the suppression of distractors is given less



emphasis in such frameworks, making their Precision much
lower than that obtained with SSA. In the SOD task, it is
widely recognized that high Precision is much more difficult
to obtain than high Recall [29], [38], and a frequently used
trade-off is to gain a remarkable increase in Precision at the
cost of slightly decreasing Recall. That is why the computation
of Fβ in this work and in almost all the image-based models
places more emphasis on Precision than Recall. Although a
higher Recall usually leads to a better subjective impression
in qualitative comparisons, the overall performance, especially
in terms of Fβ score, may be not very satisfactory due to the
emphasis of Precision in computing Fβ . This result also poses
a challenge for the proposed VOS dataset: how can the Recall
rate be further improved while maintaining the high Precision?

2) Comparisons Between (Non-Deep) Image-Based and
Video-Based Models: Beyond analyzing the best models,
another issue that is worth discussing is the performance
of image-based and video-based models, especially the non-
deep models. Interestingly, video-based models such as GF
and SAG may sometimes perform even worse than image-
based models (e.g., SMD, RBD and MB+). This may be due
to two reasons. First, the impact of incorporating temporal
information into the visual saliency computation is not always
positive. In some videos, the salient objects, as defined by
many video-based models, have specific motion patterns that
are remarkably different from those of the distractors (e.g.,
the dancing bear & girl in the second row of Fig. 4). How-
ever, this may not always be the case when processing the
“realistic” videos from VOS. For example, in some videos
with global camera motion and static salient objects/distractors
(e.g., the shoes and book in the second column of Fig. 4),
the temporal information acts as a kind of noise and often
leads to unsatisfactory results. Second, the parameters of most
video-based models are manually fine-tuned on small datasets
and may become “over-fitting” to specific scenarios. Given a
new scenario contained in VOS, these parameters may lead to
unsatisfactory results, either by emphasizing the wrong feature
channels or by propagating the wrong results from some
frames to the entire video in an energy-based optimization
framework.

3) Comparisons Between Image-Based Deep And Non-Deep
Models: From Table III, we also find that image-based deep
models often perform remarkably better than image-based
models with classic unsupervised or non-deep learning frame-
works. This may be because deep models can become very
complex to make use of massive training data. Taking the
seven deep models compared in Table III as examples, we
can create a ranked list in decreasing order of Fβ on VOS.
The ranked list, as well as the corresponding training data,
is given as follows: 1) DHSNet: 9500 from MSRA10K and
DUT-O, 2) RFCN: 10000 from MSRA10K, 3) DCL: 2500
from MSRA-B, 4) ELD: 9000 from MSRA10K, 5) MCDL:
8000 from MSRA10K, 6) LEGS: 3340 from MSRA-B and
PASCAL-S, and 7) MDF: 2500 from MSRA-B. Note that
the scenarios in DUT-O and PASCAL-S are much more
challenging than those from MSRA-B and MSRA10K (many
images of MSRA-B are also contained in MSRA10K). From
this ranked list, we can conclude that, except for an outlier

(DCL), the more training data and training sources, the
better the performance of a deep model. This finding is quite
interesting and may help explain the success of some top-
ranked deep models such as DHSNet and RFCN. Moreover,
the top-ranked models often adopt a recurrent mechanism in
detecting salient objects. Such mechanisms can help iteratively
discover salient objects and suppress probable distractors. For
video-based SOD, the success of such deep models shows a
feasible way to develop better spatiotemporal models by using
image-based training data as well as the recurrent architecture.
Furthermore, it is necessary to develop an unsupervised base-
line model that utilizes no training data in any form to provide
fair comparisons for the other unsupervised and supervised
models. Therefore, we propose SSA, an unsupervised model
with the potential of being widely used as the baseline model
on VOS.

C. Performance Analysis of SSA

Beyond model benchmarking, we also conducted several
experiments to analyze the performance of SSA, including
scalability and speed tests, influences of various components
and the temporal window size, and the failure cases.

1) Scalability Test: One concern about SSA may be its
scalability to other datasets. To examine this, we reuse the
stacked autoencoders generated on VOS on a new dataset
ViSal [21]. On ViSal, the performances of SSA and the other
nine models (i.e., the top three models on VOS from each
model category) are reported in Table IV. We find that the
overall performance of SSA, although not fine-tuned on ViSal,
still ranks second place on this dataset (it is only outperformed
by the deep model DHSNet). In particular, its MAE score
is ranked higher than on VOS, which may be because VOS
is a large dataset that covers a variety of scenarios (e.g.,
VOS-N contains many outdoor scenarios involving animals
and airplanes that are also present in ViSal). Moreover, the
unsupervised architecture often has better performance in
scalability tests and can be generalized to new scenarios. This
can be further demonstrated by the model FST, which ranks
third place in terms of Fβ on ViSal (which is higher than its
rank on VOS). To sum up, VOS contains a large number of
real-world scenarios, which may help reduce the over-fitting
risk. Moreover, the unsupervised framework of SSA makes it
a scalable model that can be generalized to other scenarios
without a remarkable drop in performance.

2) Influence of Various Components: SSA involves three
types of saliency, and we aim to explore which types contribute
most to the performance of SSA. Toward this end, we conduct
an experiment to examine the performance of SSA on VOS
when some types of saliency are ignored. For fair comparisons,
we adopt the same architecture of stacked autoencoders, but
set some saliency cues to zero when training and testing
SSA. As shown in Table V, the pixel-based saliency has the
best Precision, while the object-based saliency has the best
Recall. Integrating all three types of saliency leads to the best
overall performance. An interesting phenomenon is that in
the superpixel-only setting, SSA outperforms SMD in both
Recall and Precision, while SMD is exactly the model used in



TABLE IV

PERFORMANCE SCORES OF OUR APPROACH AND THE OTHER 9 MODELS
ON VISAL. THE TOP 3 SCORES IN EACH COLUMN ARE MARKED IN

RED, GREEN AND BLUE, RESPECTIVELY

TABLE V

PERFORMANCE OF SSA ON VOS WHEN DIFFERENT TYPES

OF SALIENCY CUES ARE USED

computing the superpixel-based saliency. This may be mainly
because temporal cues from adjacent frames are incorporated
into the auto-encoding processes, which provides an opportu-
nity to refine the results of SMD from a temporal perspective.
Due to the existence of the temporal dimension in defining
and annotating salient video objects, video-based SOD datasets
contain something that cannot be obtained from image-based
SOD datasets. For example, in the “fighting bears” scenario
illustrated in the first two rows of the right column of Fig. 9,
the mailbox and cars are considered to be non-salient from the
perspective of the entire video, even though in some specific
frames they do capture more human fixations than the fighting
bears. In other words, the VOS dataset provides a new way to
explore the influence of spatiotemporal cues (e.g., optical flow
and features propagated from adjacent frames) in defining,
annotating and detecting salient objects, while in most image-
based SOD datasets only spatial cues are involved. We believe
the spatiotemporal definition of salient objects in VOS may
help methods in future works distinguish salient and non-
salient objects in the same way that human beings do.

3) Influence of Temporal Window Size: In SSA, only one
subsequent frame is considered when processing a frame.
To evaluate this, we conduct an experiment that gradually
incorporates zero or more subsequent frames and examine the
Fβ variation of SSA on VOS. In this experiment, we consider
the next W frames, where W = 0, 1, 2, 4, 8 or 15. As shown
in Fig. 10, by considering only the subsequent frame, the Fβ

score increase from 0.735 (W=0) to 0.755 (W=1). This result
implies that the temporal cues can facilitate the detection of
salient objects in a frame, even though consecutive frames
are highly related. With the incorporation of additional frames

Fig. 10. Performance of SSA on VOS when temporal windows with different
sizes are taken into consideration.

(W = 2, 4, 8 or 15), the Fβ score gradually decreases.
This may be because the temporal correspondence between
consecutive frames is the most reliable, and the reliability
gradually decreases when the temporal gap between two
frames increases. Although using a longer temporal window
can bring us more cues in detecting salient objects and lead
to higher Recall; such long-term temporal correspondences,
which are not very reliable, may decrease the Precision. As a
result, the Fβ score, which places greater emphasis on the
Precision, decreases with a longer temporal window. Such an
experiment, together with the scalability test, can empirically
prove that the over-fitting risk of SSA is not very high, even
though only one subsequent frame is used as the temporal
context of the current frame.

4) Speed Test: The SSA model consists of many feature
extraction steps, and their speed analysis will help determine
how to further enhance the efficiency. Toward this end, we
calculate the time costs of various key steps of SSA in
processing the first video in VOS, and compare them with
those of the other five video-based SOD models. Note that
the video has an original resolution of 800 × 448, and we
down-sample it to 400 × 224 for the fair comparison of
various models in the speed test. All models are tested on
a CPU platform (single core, 3.4 GHz) with 128GB memory.
As shown in Table VI, the speed of SSA is comparable to
those of many previous algorithms, such as SIV and NLC.
By investigating the time cost of each component of SSA, we
find that approximately 58.8% of the computational resource is
consumed in extracting the object proposal, and approximately
22.1% is spent on generating the optical flow. As a result,
a probable way to speed up SSA is to replace these two
components with faster models for object proposal generation
and optical flow computation. In addition, a parallel processing
mechanism can be explored as well, especially in extracting
and encoding frame-wise saliency cues.

5) Failure Cases: Although SSA outperforms many state-
of-the-art models, we can see that its Fβ score is still far
from perfect, which is mainly due to the low Recall rate.
On VOS-E, which contains only simple videos with nearly
static salient objects and distractors as well as slow camera
motion, SSA only reaches an Fβ score of 0.850 (still far from
perfect), while the performance score drops sharply to 0.665
on VOS-N. This implies that the videos from the real-world
scenarios are much more challenging than the videos taken in



TABLE VI

SPEED TEST OF SSA, ALL ITS COMPONENTS AND THE OTHER
5 VIDEO-BASED SOD MODELS. ALL TESTS ARE TESTED ON

THE FIRST VIDEO OF VOS WITH 617 FRAMES, WHICH IS

DOWN-SAMPLED TO THE RESOLUTION OF 400 × 224
FOR FAIR COMPARISONS OF ALL MODELS

the laboratory environment. This is also the main barrier to
the usage of existing SOD models in other applications.

To validate this point, we illustrate in Fig. 11 two repre-
sentative scenarios in which SSA fails, which provide two
key challenges in video-based SOD. First, salient objects in
a keyframe should be defined and detected by considering
the entire video, other than the keyframe itself. For example,
in some early frames of Fig. 11, it is difficult to determine
whether the pen or the notebook is the most salient object.
Although the pen is correctly detected in some later frames,
it is difficult to transfer such correct results to frames that are
separated by a large temporal gap. This indicates that the local
spatiotemporal correspondences between pixels used by SSA
are still insufficient to handle more challenging scenarios, and
a salient object should be detected by computing the saliency
from the global perspective as well.

Nevertheless, the failure cases in Fig. 11 not only suggest
what should be considered in developing new video-based
models but also validate the effectiveness of the VOS dataset.
The indoor/outdoor scenarios from VOS are mainly taken by
non-professional photographers, which are quite different from
those in existing image datasets. For example, the moving
crab in Fig. 11 consistently receives the highest density of
fixations and becomes the most salient object in the video,
even though it is very small. The existence of such scenarios
in VOS increases the difficulties in transferring the knowledge
obtained from existing image datasets (e.g., the deep model
DHSNet, learned from 9500 images) to the spatiotemporal
domain, making video-based SOD on VOS an extremely
challenging task. With such challenging cases, it is believed
that VOS can facilitate the development of new models by
benchmarking their performances in processing real-world
videos.

D. Discussion

From all the results presented above, we draw three major
conclusions: First, video-based SOD is much more challenging
than image-based SOD. Even the state-of-the-art image-based
models perform far from perfectly without fully utilizing the

Fig. 11. Failure cases. (a) Frames, (b) the fixations received in 30 ms after a
keyframe is displayed, (c) binary masks of salient objects and (d) the estimated
saliency maps of SSA.

temporal information from both local and global perspectives.
Second, there exists an inherent relationship between image-
based and video-based SOD, and the VOS-E subset serves as
a good baseline to help extend existing image-based models to
the spatiotemporal domain. Third, real-world scenarios are still
very challenging for existing models. In user-generated videos,
salient objects may be very small, fast moving, with poor
lighting conditions and cluttered dynamic background, etc.
By handling such challenging scenarios in VOS-N, a model
can improve its capability to process real-world scenarios.
In particular, fixation prediction models often have impressive
performances in detecting the most salient locations even
in very complex real-world scenarios [74], [75]. Therefore,
developing a better fixation prediction model may be very
helpful in handling the VOS-N dataset, in which salient objects
are annotated with respect to human fixations.

VI. CONCLUSION

Salient object detection is a hot topic in the area of computer
vision. In the past five years, hundreds of innovative models
have been proposed for detecting salient objects in images,
which have gradually evolved from bottom-up models to deep
models due to the availability of large-scale image datasets.
However, the problem of video-based SOD has not been
sufficiently explored due to the lack of large-scale video
datasets. The most challenging step in constructing such a
dataset is providing a reasonable and unambiguous definition
of salient objects from the spatiotemporal perspective.

In this paper, we propose VOS, which is a large-scale
dataset with 200 videos. Different from existing datasets,
salient objects in VOS are defined by combining human
fixations and manually annotated objects throughout a video.
As a result, the definition and annotation of salient objects
in videos become less ambiguous. Moreover, we propose
saliency-guided stacked autoencoders for video-based SOD,
which are compared with massive state-of-the-art models on
VOS to demonstrate the challenges of video-based SOD as
well as its differences from and relationship with image-
based SOD. We find that VOS is very challenging, as it
contains a large number of realistic videos, and its subset
VOS-E serves as a good baseline for extending existing image-
based models to the spatiotemporal domain. Moreover, its
subset VOS-N covers many real-world scenarios that can
facilitate the development of better algorithms. This dataset
can be very helpful in video-based SOD, and the unsupervised



saliency-guided stacked autoencoders can be used as a good
baseline model for benchmarking new video-based models.
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