Exploring Weakly Labeled Images for Video Object
Segmentation With Submodular Proposal Selection

Yu Zhang
Jia Li

Abstract— Video object segmentation (VOS) is important for
various computer vision problems, and handling it with minimal
human supervision is highly desired for the large-scale applica-
tions. To bring down the supervision, existing approaches largely
follow a data mining perspective by assuming the availability of
multiple videos sharing the same object categories. It, however,
would be problematic for the tasks that consume a single
video. To address this problem, this paper proposes a novel
approach that explores weakly labeled images to solve video
object segmentation. Given a video labeled with a target category,
images labeled with the same category are collected, from
which noisy object exemplars are automatically discovered. After
that the proposed approach extracts a set of region proposals
on various frames and efficiently matches them with massive
noisy exemplars in terms of appearance and spatial context.
We then jointly select the best proposals across the video by
solving a novel submodular problem that combines region voting
and global region matching. Finally, the localization results are
leveraged as strong supervision to guide pixel-level segmentation.
Extensive experiments are conducted on two challenging public
databases: Youtube-Objects and DAVIS. The results suggest that
the proposed approach improves over previous weakly super-
vised/unsupervised approaches significantly, showing a perfor-
mance even comparable with the several approaches supervised
by the costly manual segmentations.

Index Terms— Semantic object segmentation, weakly labeled
video, exemplar matching, submodular optimization.
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I. INTRODUCTION

IDEO object segmentation (VOS) aims to delineate the
Vphysical boundaries of object(s) of interest present in a
video along space and time axes. It supports various computer
vision applications, e.g., class model training [52], [62], action
recognition [37] and video editing [10]. In general, there
are two tightly correlated subtasks to be addressed for VOS.
The first is the localization problem, i.e., the target object(s)
should be effectively accessed by the system. The other one is
object segmentation, which looks deeper into detailed object
boundaries. The first problem is highly critical since it provides
important initial object-level cues.

For user editing tasks, the localization part is (par-
tially) addressed by users with low-cost interactions. They
can take various forms: manual segmentations on key
frame(s) [6], [48], [51], [65], bounding boxes [15], [57] and
even strokes [42]. With these sparse but reliable local-
izations, the segmentation part of VOS can be effec-
tively solved, either through heuristic spatiotemporal prop-
agation [51], [65] or guided training [6], [48]. The latter
has achieved high-quality results by making use of modern
well-annotated datasets and learning architectures. However,
requiring user interactions for novel videos could be expensive
for large-scale or even web-scale applications.

Localizing the video objects automatically is not trivial with
a variety of challenges. A major one is the creation of sufficient
annotated videos for training the localization module, which is
hardly to achieve at large scale. Consequently, the past decade
has largely witnessed learning-free VOS models developed
with low-level motion, saliency, and boundary cues [9], [26],
[32], [47], [67]. However, these bottom-up solutions might be
less effective for recognizing unsalient targets within complex
scenes. Recent works proposed to employ image-based object
detectors to help VOS [5], [66], [70]. However, learning such
detectors still relies on massive annotations of the objects of
interest, which are scarce for most real-world categories.

To handle this problem, a line of works [19], [35],
[62], [71] proposed to address the localization part of VOS
with video-level labels, which are much easier to collect.
In these approaches, input videos are labeled so that the
presence/absence status of the target object categories are
known, rather than their exact positions. The collective cues
of large amounts of such weakly labeled videos were then
explored for localizing the common targets. Such a paradigm,
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The pipeline of the proposed approach. Noisy object exemplars are automatically discovered from the images weakly labeled with a category

(e.g., “cat”), which may have inaccurate or false localizations (marked in green and red boxes, respectively). Given an input video labeled with the same

category, a set of region proposals are extracted on various frames and matched
proposals on each frame simultaneously via the proposed submodular proposal

to the exemplars to get localization scores. We then select the best localization
selection algorithm, and project them onto superpixels to form multiple initial

foreground seeds. We further propagate these seeds along the pixel graph of the video to generate consistent segmentations. (Best viewed in color with zoom.)

however, is usually not directly applicable on single-video
applications.

This paper’s objective is to provide a novel weakly super-
vised approach for VOS that is applicable to a single video.
To this end, we propose to explore massive weakly labeled
images to address the localization part of VOS. Given a
category of interest, our approach firstly discovers object
exemplars from the images labeled with the same cate-
gory. Region proposals are then extracted from various video
frames, and matched with the exemplars for proposal scoring.
As shown in the left of Fig. 1, however, an issue that prohibits
accurate matching is that automatic localizations of exemplars
tend to be noisy. To handle this problem, we propose a fast
algorithm that robustly matches the region proposals with
massive exemplars in terms of appearance and spatial context.
After proposal scoring, the best localization proposals are
jointly selected on each frame by solving a submodular prob-
lem combining region voting and global matching. Finally,
the localizations are projected onto pixels and refined to
generate final segmentations. Extensive experiments on two
public benchmarks Youtube-Objects [52] and DAVIS [50]
show that our approach performs substantially better than
existing weakly supervised and unsupervised approaches, even
comparably with various supervised ones.

This paper makes the following contributions:

1) We propose a novel weakly supervised VOS approach
by exploring massive weakly labeled images, which
is applicable on handling a single video and achieves
impressive results on large-scale public benchmarks;

2) We present a fast matching algorithm which jointly con-
siders region appearance and spatial context, to robustly
handle the noisy localizations of image exemplars;

3) We formulate a submodular problem for selecting local-
ization proposals combining region voting and global
matching, which could effectively remove false localiza-
tions to generate consistent segmentation results.

We organize this paper as follows. Sect. II briefly reviews
the relevant works on VOS. Sect. III describes how to explore
weakly labeled images for extracting the localization proposals
in video and Sect. IV introduces the techniques of submodular
proposal selection. Necessary details for implementation are
summarized in Sect. V. Experimental results are presented in
Sect. VI and the paper is concluded in Sect. VII.

II. RELATED WORKS

Existing models address VOS with various types of super-
vision, which can be roughly categorized into three groups.
The supervised group is trained and/or initialized with manual
segmentations of the target object categories, while the unsu-
pervised group requires neither category-specific training nor
user’s interactions. The weakly supervised group allows using
light-weight form of manual annotations during training and/or
testing. We briefly review each of them, and make a discussion
on highly relevant works that explores weakly labeled images
for visual understanding problems.

A. Supervised VOS Models

There are two paradigms to introduce accurate supervi-
sions into VOS. The first learns category-aware appearance
models from massive segmented images/videos [22], [31],
[33], [63], [66]. Typically, pretrained segmentation models
were applied on the input video(s), whose output are fur-
ther refined through intra-video consistency (e.g. temporal
cues [31], [33]) or inter-video consistency [65]. However, since
this paradigm solves a larger problem of assigning each pixel
to a known category or background, model training is often
costly and heavily affected by the availability of annotations
from the target categories.

The second paradigm, as widely referred as semi-supervised
VOS, propagates user’s manual annotations on the sparse
key frame(s) to the whole video. It could be performed by
heuristically fusing appearance and motion cues [38], [38],
[51], [65], or learned from existing image/video annota-
tions [6], [48]. In general, semi-supervised VOS can achieve
high-quality results due to the accurate prior knowledge of the
objects of interest. However, they somewhat have difficulty
scaling to large-scale applications that have to process a large
amount of videos.

B. Unsupervised VOS Models

Unsupervised VOS models perform object localization and
segmentation with intrinsic cues, which is often achieved by
identifying the regions with salient motion and/or appearance.
For example, several approaches suppose that the foreground
objects move in distinct patterns which are different from
the background [27], [45], or have closed motion bound-
aries [47]. Visual saliency was also explored to help localize
the objects when motion cues fail [9], [26]. However, low-
level visual or motion cues are usually unreliable in case



of complex scenes, which may lead to unexpected results in
certain scenarios.

There was also a trend that incorporates mid-level cues for
unsupervised VOS [8], [23], [32]. Typically, these approaches
first apply the mid-level object proposals [30], [46] to extract
a pool of segments in the video, then select a consistent subset
of segments to represent the target objects. However, without
prior knowledge, these approaches tend to emphasize on the
primary object(s) present in a video, and may not work well
on the videos where the targets are unsalient in space and time.

C. Weakly Supervised VOS Models

Weakly supervised approaches overcome the drawbacks
of supervised and unsupervised ones by assuming low-cost
human supervision during training and testing. For the VOS
task it is considered to originate from Hartmann et al. [19],
which learns object segmentations from a large corpus of
web videos. There have been many following works after-
wards [21], [35], [62], [71]. In these works a set of videos
are firstly collected, which are labeled with the target cat-
egories or irrelevant categories. After that, they decompose
the input videos into spatiotemporal segments and perform
various forms of weakly supervised learning (e.g. negative
mining [62], nearest neighbor classification [35] and represen-
tative segment selection [71]) to divide them into foreground
and background. Recently, Hong er al. [21] has proposed
the first deep learning approach that combines class-agnostic
attentions and video-level propagation for weakly supervised
SOS, and achieves impressive results.

The learning perspective of weakly supervised VOS is based
on the availability of large amounts of relevant input videos.
To handle a single video, recent works [5], [70] proposed to
incorporate object detectors trained with weaker annotations,
i.e., bounding boxes. They perform object detection on various
frames to generate object tracks, which are further refined with
motion cues to generate visually consistent results. Although
these works have demonstrated strong performance, they still
leave behind the problem that even bounding box annotations
are available for rather limited number of real-world object
categories. Therefore, bringing down the human supervision
required for VOS to the minimal level is still an open problem.

D. Visual Understanding With Weakly Labeled Images

Exploring weakly labeled images for visual understanding is
a promising direction that has been demonstrated by solving
a wide range of tasks. For example, Sultani and Shah [60]
proposes to explore the human actions automatically discov-
ered from web images to guide action localization in videos.
Aubry et al. [4] utilizes massive chair images rendered from
3D CAD models to detect object locations and 3D poses in
real images. Khosla ef al. [28] proposes to discover canon-
ical object views from internet photos for large-scale video
summarization.

A similar idea with ours is proposed by Ahmed et al. [3],
which utilizes weakly labeled images for image segmentation.
However, they assume that most of the collected images have
clean background by searching on the internet with controlled

key words. In this work, we explore much more general form
of weakly labeled images. Our approach also differs with [3]
in addressing object segmentation in spatiotemporal domain.

III. EXPLORING WEAKLY LABELED IMAGES
FOR VIDEO OBJECT LOCALIZATION

Given the input video which is associated with a category
label, images labeled with the same category are firstly col-
lected, from which a set of exemplars are discovered. A novel
algorithm is then proposed that matches the exemplars to
the video content and generates category-specific localization
proposals. In the rest of this section, we firstly describe the
exemplar discovery algorithm used in this work for complete-
ness, and then present the proposed matching algorithm in
more details.

Note that instead of employing existing object detectors pre-
trained for large-scale object detection (e.g. Faster RCNN [54]
and YOLO [53]), we propose, to the best of our knowl-
edge, the first exemplar-driven approach to solve video object
segmentation. Such approaches have been extensively stud-
ied for image recognition [3], [17], [43] for their practical
advantage that handles newly acquired data/categories without
expensive retraining/fine-tuning. Experiments suggest that our
approach can achieve even better results than previous works
that employ pretrained detectors and tracking-by-detection
methods.

A. Exemplar Discovery From Weakly Labeled Images

Although there are many existing approaches for exemplar
discovery from images (e.g. [7], [56]), they are often inefficient
since the ultimate goal of them is to accurately co-localize the
common objects in all the images. As we are only interested
to collect a set of good exemplars, we can adopt a simpler and
more efficient approach to achieve this purpose.

In details, we apply a state-of-the-art salient object proposal
generator [69] to extract up to 30 proposals per image. Similar
with many mid-level object proposals [13], [34], [39], [61],
salient object proposals [34], [69] are pretrained with a small
amount of annotations to learn general object-level knowledge.
However, instead of localizing all the objects present in the
scene with a large pool of proposals to achieve high recall,
they aim to detect a few objects of salient appearance with high
precision and are thus suitable for quickly discovering a set of
high-quality exemplars. Without category-specific knowledge,
the extracted proposals may contain many irrelevant objects.
However, it is reasonable to assume that objects from the target
category appear most frequently. Therefore, we can construct
a pairwise affinity matrix S to model the consensus of category
distributions between a pair of proposals & and &;:

e—lleE)—e(€)I?
S eop e leE =@

The proposal representation ¢(€) is the 1000-class probability
vector predicted by the VGG-16 network [58] pretrained for
image classification. If two proposals are from the same cate-
gory, they have similar class distributions and the consensus is
thus larger. Following [60], we perform the manifold ranking

S, = (1)



Fig. 2. Discovered exemplars on the Pascal VOC 2012 dataset. Each column shows results from a different object category. Row Ist: successfully discovered
exemplars. Row 2nd: false positive exemplars, which mainly come from frequently co-occurred categories (e.g. person appear frequently with many categories).
Row 3rd: representative exemplars removed by manifold ranking. The removed exemplars include irrelevant object categories, meaningful but incomplete

object parts, and false localizations.

algorithm to rank the proposals. Initially, the scores of all the
proposals (denoted with y,) are the same. Manifold ranking
iteratively smoothes each exemplar’s score by gradually taking
the votes from their neighbors, namely,

yO D = aSy® + (1 — a)y,, )

where a is set to 0.99, and y) is the vector of exemplar scores
at the rth iteration. In this manner, windows with irregular class
distributions are pushed far away from others and scored lower.
We refer the readers to [72] for more details of the algorithm.
After scoring the proposals, we retain the top N proposals
as exemplars. However, the retained exemplars are still noisy
and may contain co-occurred but actually irrelevant categories
(e.g. persons appear frequently along with many other cate-
gories, see Fig. 2). In the rest of this section, we propose a
novel algorithm to efficiently and robustly handle this issue.

B. Object Localization in Video

For each frame of the input video, the proposed localization
algorithm starts with extracting a set of region proposals. For
the sake of clarity, we concentrate on the principle of algorithm
design here and put the necessary details for implementation
in Sect. V. For each region R, its appearance is represented as
f(R) in some feature space. We find its K nearest exemplars
in this space and denote them with Oy (R), k € {1,2,--- , K}.
With the matched exemplars, the region R can be scored by
accumulating its affinities with the nearest exemplars

K K
L _ 2
S(R) =D a (R, Ou(R)) = ¢ ITOTHATON 3
k=1 k=1

where y, is the bandwidth of the Gaussian kernel. Note that (3)
can be deemed as a soft K-Nearest-Neighbor (kNN) classifier.
In ideal case, the number of nearest exemplars K is usually
set small to reduce the approximation error of a kNN model.
However, since the discovered exemplars often contain noisy
ones from irrelevant categories, small K may introduce large
estimation error. Fig. 3 illustrates an example. Since persons
frequently appear in the frain category, the person in this video
receives good matches from the exemplar set and is scored
higher than the target train. Therefore, K should be necessarily
large to effectively bypass this negative effect.

Input frame # neighbors =20

Fig. 3. The highest scored region proposal using different numbers of nearest
exemplars on a train video. Few neighbors makes the matching sensitive to
the noisy exemplars from irrelevant categories (e.g., persons appear in many
images labeled with other categories, see Fig. 2).

"~ Full model

w/o context matching

Fig. 4. The highest scored region proposal with and without context matching
on a frame of a video labeled with bird. Localization by appearance matching
with a large number of exemplars is biased to include additional background
area to adapt to the diverse appearance of exemplars.

However, since the target object is usually similar with only
a few exemplars, simply aggregating the appearance affinities
with a large number of dissimilar exemplars may unexpectedly
“over-smooth” the signal of the target object. As a result,
the localization is biased to include addtional background
to better adapt to the diverse appearance of the exemplars
(see Fig. 4). To address this issue, we propose to weight the
contributions of different exemplars by their spatial context,
namely

K
S'(R) =D c(R.Ox(R)) a (R, Oc(R)), )
k=1

where ¢ (R, Ox(R)) measures the similarity of spatial con-
figurations of the nearby regions between the input proposal
and the exemplar neighbor. The intuition behind (4) is that
if the spatial context of an exemplar is similar with the input
region, this match should be more confident than the others and
thus weighted larger. To measure the context-based similarity,
we sample a set of regions N(R) arount R with sufficient
spatial overlap (i.e., the Jaccard index is greater than 0.5).
For each nearby region R’ € N(R), we match it to the image
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The pipeline of the proposed exemplar matching algorithm. The algorithm output combines two kinds of affinities. The appearance affinity is

computed by matching region appearance in feature space. To compute the context similarity, a set of nearby regions is sampled around the input proposal
and matched to the exemplar image. Each match transfers back a predicted object position, which gives votes to all the proposals on the frame. The context
affinity quantifies the similarity between the position of the input proposal and and the one that recieves maximal votes. (Best viewed in color.)

containing O (R) to obtain the matched region Py (R’), based
on their appearance features. If the context configurations
are similar, the offset between Pr(R’) and Or(R) and that
between R’ and the underlying object should be consistent.
Therefore, each region R’ can generate a guessed object
location 7;(R’) by preserving such offset. This lead to the
following formula:

x (T(R)) = x(R) ® (x (Ok(R)) ©x (Pk(R))), (5

where x(-) is a vector concatenating the x and y coordinates
and scale (i.e., the square root of area) of the input region,
the symbols @ and & represent element-wise plus and minus
operations for vectors, respectively. In this manner, we obtain
a set of transfer results for each region in N(R).

The transferred regions often have inconsistent positions due
to the noise in region matching. Thus, we let them to softly
assign votes to each input proposal, and select the one with the
maximal consensus as the final prediction. For each proposal
Ro € R, its vote is accumulated as follows

Uk(RO) — Z a (N’ ka(N)) e—yls”X(T(N))—X(RO)”z’ (6)
NENR

which jointly considers the transfer quality and spatial affinity.
Afterwards, the final prediction is chosen by

R* = Ro). 7
arg%i)ﬁ vk (Ro) @)

We set the context-based weights as the agreement between
the position of the input proposal R and the result predicted
by its spatial context:

¢ (R, O4(R)) = ¢ 3 INRIXRII?, ®

Although the proposed spatial matching algorithm improves
the performance significantly in our experiments, a drawback
is that computing votes for every input proposal using (6) is
expensive since it has time complexity O (|R||Ng|), where |- |
is the size of an input set. Preliminary experiments suggest
that a naive implementation will take 30 seconds to process
a frame with Kg¢ = 200 and |R| =~ 700, which cannot be
affordable in practice. However, an interesting property of the
proposed formulation is that the time-consuming step (6) is
actually an instance of Gaussian filtering. This property makes
it possible to apply an efficient solver [2] to compute (6) via
fast convolution on a specialized data structure. With respect
to our case, it consists of three steps: 1) splatting, which
maps the region coordinates to a set of pre-defined feature
nodes; 2) blurring, approximating the filtering steps using the
fast solver; and 3) slicing, inversely reconstructing the region
votes as the linear combinations of the blurred values on the
feature nodes. The time complexity of this algorithm is only
O (IR| + |NR|), which reduces the time cost from quadratic to
linear. Due to the page limit, we omit further details and refer
the interested readers to [2]. After scoring the proposals by (4),
we retain the top 30 proposals on each frame as the candidate
localization proposals of the target object in the video.

IV. SUBMODULAR PROPOSAL SELECTION

Note that the above matching process operates at per-frame
basis and ignores video-level consistency. Thus, it is somewhat
sensitive to the imperfect conditions on certain frames, where
occlusion and fast camera/object transition occurs. To address
this problem, this section proposes an efficient algorithm that
globally selects localizations on all the frames.



Fig. 6. Proposal selection results for two sample videos. For each video, we show several localization proposals with the highest scores for each frame in the
top row and the selection results in the bottom. In the top row, colors represent localization scores (red is highest and dark blue is lowest). Not considering
the mutual dependence of proposal scores only localizes the discriminative parts of the target objects instead of their whole extent (solid boxes). The proposed
context-aware algorithm correctly localizes the objects (dashed boxes). (Best viewed in color.)

A. Problem Formulation

Given the input video V, and a set of localization proposals
LL; on the tth frame, t € T = {1,2,---, T}, our task is to
select one proposal on each frame, i.e. L* = {L}};cT, reL,
to represent the target object. We formulate this task as
finding a subgraph from a fully connected graph, where the
localization proposals on all the frames form the nodes and
edges exist between any pair of nodes. With the redundant
connections that can span across long-range time windows,
fully connected graphs are effective to handle segmentation-
related challenges such as occlusion and fast camera/object
transition [29], [51].

We follow the Maximum A Posteriori (MAP) framework to
address the proposal selection task, i.e. to maximize the poste-
rior P(IL*|V). We start with the following Gibbs distribution:

Pyipps (IL*[V)ox H o—EaLIV) | H

LelL* L,Loell*, L#Ly

efﬂES(,C,,Co\V), 9)

where the data term Py(L*|V) = [[ oy e P4V factorizes
across each individual proposal modeling their relevance to
the category of interest, while the smooth term Py(L*|V) =
HE, Loell*, L£Lo e~ Es(L.LalV) enforces matching consistency
among the selected proposals, and 4 is a non-negative weight
parameter. Formulations like (9) have been widely adopted to
solve proposal selection tasks [20], [25].

A drawback of (9), however, is that the data term considers
the proposals independently, which means that goodness of a
proposal only depends on its score without accessing to other
context information. In our task, this leads to failures if a small
part of the target object receives higher score than the whole
object region. Such issues can be observed for objects with
non-rigid or irregular shapes, since their discriminative parts
may appear more consistently than the whole bodies across
both the image exemplars and the input video (see Fig. 6).

To address this issue we rely on two observations. First,
the top scored proposals, although may correspond to small
object parts, still lie inside the groundtruth object region.
Second, the proposals with high scores are mostly distributed
on the object body, and for those spanning over additional
background area their scores decrease sharply. Such disconti-
nuity of proposal scores is a side-effect of the proposed context
matching algorithm as large background area makes the spatial
configuration of context regions differ greatly with that of
exemplars.

The observations and analysis above inspire us to propose a
formulation that explores the second-order information of pro-
posal scores implemented as region voting. For each proposal
L; € L;, we introduce a binary auxiliary variable u(L;, L})
which takes 1 if £, serves as a “supporter” of the selected
proposal L on the same frame, and O otherwise. Assuming
that u(-,-) is independent in terms of different proposals,
we apply the following conditional probabilities

5(L) +5(LF) «
W, LT L
o ~ (10)
Py (u(Ly, L)) = 11V) = (s(CH) = (L)), £
zicy T h
(11

and Py (u(Ly, L) =0[V) = 7z In these equations, 5(-)
is computed by normalizing the proposal score (4) into [0, 1],
and the symbol T or  means that the left region contains or is
contained by the right region, respectively. The function (-)4
is short for max(-, 0), and Z(-) is the normalization factor of
the probabilities. Note that (10) and (11) correspond to the two
observations of proposal score distributions. The parameter ¢
controls the probability that the proposal £, is drawn from the
background and does not contribute to the voting.

Regarding the values of voting variables u as hidden states
in defining Py (IL*|V), now we have

Py(L*[V) = D" Pa(L*, ulV) o« D Pa(L*[w, V) Pa(ulV).

For fixed voting variables u, the selected proposals L.* could
be uniquely determined since proposals that are voted should
be also in the selection results. It means that the probability
Py(IL*|u, V) equals zero anywhere except at certain IL* indi-
cated by u. Thus, maximizing Pgipps (IL*|V) is equivalent to

max Peibbs @) = max Py L* V) Py (L*|V)
104 glax Py(IL*a, V) Py(u|V) Py (LF|V). (12)
*u

Since the relationship between u and IL* does not depend on
the specific form of the input video,

Py(IL*
PAL0 ) = Pa(Li) = T g
Pq(u)
We define the joint distribution of LL* and u as
Py(L*,u) = Pa(LY) Py (w)C (L*, w)Co (L), (14)



where C| (-, -) is an indicator function that takes 1 if constraints
between L* and u are satisfied, and O otherwise. The function
C>(-) complies the constraint that one proposal is selected on
each frame. Substituting (13) and (14) into (12), we have

H]Llax Pgipps (£*|V) X Ianax Py(ulV)1 S(L*|V)Cl @, u)CZ(]L*),
* *,u
(15)

which is the objective we need to optimize. Note that Py (u|))
has been previously defined, and we assume uniform prior of
L* and thus omit the term P, (IL*) in (15). To compute the
smooth term Py(IL*|V), we define the cost as Es (L], L3]V) =
1 — c(Ly, LY)a(LT, L3), i.e., reusing the appearance and
context matching proposed in (4).

B. Optimization
The logarithm of the objective of (15) takes the form

DD logP (u(L, LHIV) =4 D EJL} L3V),
t Liel,, L}, L5el*
Lrel*nlL,
subject to Vi € T, |L*NL, =1. (16)

We omit Ci (-, -) and Ca(-) as the constraints are now explicitly
considered. Maximizing (16) jointly over IL* and u is NP-hard.
However, by regarding it as a set optimization problem defined
over L* (ie., firstly maximizing over u then over IL*), two
good properties could be shown. First, the objective function
now becomes submodular (the proof is referred to the sup-
plementary material). Second, the disjoint sets {Lz}thl form a
partition matroid w.r.t. the solution IL* since V¢, [L*UL,;| < 1.

These facts suggest that (16) is connected to the con-
strained submodular maximization problem defined on par-
tition matroids [12], [68]. For such family of problems, good
local optimality could be guaranteed with a simple greedy
algorithm. Thus, we propose a two-stage algorithm that firstly
solves the relaxed submodular problem to obtain the selected
results on several frames. These proposals are then regarded as
reliable seeds to guide the selection on the remaining frames.

Stage I: Relaxing the original equality constraints to
inequalities V7, |L* UL;| < 1 leads to a constrained submod-
ular maximization problem. Starting with an initially selected
proposal, the greedy algorithm performs a sequence of local
update operations: Add Operation, which introduces a new
proposal into the solution set; Swap Operation, which replaces
a selected proposal with a currently unselected one; Delete
Operation, which removes an already selected proposal. Each
operation aims to increase the value of the objective function.
We perform the algorithm with multiple iterations, each time
starting with the highest scored proposal on a different frame.
The algorithm initialized on the tth frame is summarized in
Alg. 1, where W (IL*) represents the objective value under the
solution IL*. The final solution is chosen as one that maximizes
the objective value among all the iterations.

Stage II: The relaxed constraints do not ensure that each
frame has a selected proposal. Thus we greedily select propos-
als for the remaining frames, starting with the current solution
set L*, T*. We iteratively perform the following operations:
1) solve (%, [:) = argmax;e\T+,cel, ¥ (L* U £); 2) update

Algorithm 1 The Algorithm of State I Initialized by the
Highest Scored Proposal on the fth Frame

1: Input L* = {argmaxcer, 5(£)}, T* = {t};

: While |L*| < T and L* is updated by any operation

3:  Add operation: if 3t € T\ T*, £ € L, s.t. ¥(L*U
{L}) > ¥(L*), then L* =L* U {L}, T* = T* U {t};

4:  Swap operation: if Jtg € T*, Ly € L* N1y, t € T\
T*, L € Ly, s.it. U(L*\ {Lo} U{L}) > ¥(L*), then
L* = L\ {Lo} U{L}, T* = T*\ {to} U{t};

5:  Delete operation: if 3t € T*, £ € L* N L, s.t. U(L*\

{L}) > U(L*), then L* = L*\ {L}, T* =T*\ {t};
End While
7: return L*.

l\)

a

L* =L*U{{},T* =
frames are processed.

T* U {f}, until [L*| = |T*| = T, i.e. all

C. Integration for Video Object Segmentation

So far, the proposed approach generates a set of localization
bounding-boxes for the input video. In the rest of this section,
we show how to produce pixel-level segmentation masks from
bounding-box initializations. Our main idea follows the con-
sensus voting approach [9], which generates initial foreground
saliency maps individually on each frame and then iteratively
refines them on a superpixel graph.

We first derive a global saliency map for each frame using
the segmentation masks associated with the region proposals.
Such segmentations are available along with bounding-boxes
for many concurrent proposals [30], [40], [46]. Denote M(L)
as the set of foreground pixels inside some region proposal L.
For each pixel location A/ on the tth frame, its saliency value is
given as the frequency that it is covered by foreground masks:

> rer, LWV e M(L)) F(L)
ZLG]L, 1N eM(KL)

where 1(-) is the characteristic function which takes 1 if the
input condition holds, and 0 otherwise. To account for salient
motions, each proposal L is reweighted by the average magni-
tude of optical flows F (L) computed along the segmentation
boundary, following [8].

The saliency map obtained by (17) is then modulated by
the localizations provided by the proposal selection algorithm.
Given the localized bounding box L on the rth frame,
we define a spatial Gaussian centered at £ to generate a
position-sensitive foreground map:

s HX(N)*X(E )
w(L;‘)

SI(N):

a7)

[ (L
P 2 >”2)

G/(W) = e
where x(-) and y(-) define the image coordinates of a pixel
(or region center), and w(-), h(-) represent the width and
height of a region, respectively. The final foreground saliencies
combine (17) and (18) by pixel-wise multiplication.

For refining the initial foreground maps we follow the first
stage of the consensus voting algorithm [9] precisely. Briefly
speaking, a kNN superpixel graph is firstly constructed for the
video by finding the nearest neighbors of each superpixel in

(18)



appearance feature space. On this graph, the initial saliencies
are regarded as seeding segmentations and iteratively improved
with the random-walk algorithm [18] to generate final segmen-
tations. We choose this refinement procedure for its simplicity,
fast speed and superior performance, while other commonly
adopted routines (e.g. GrabCut [55]) could be applied either.

V. IMPLEMENTATION DETAILS
A. Object Proposals

We adopt the fast mode of MCG proposals [46], using its
unsupervised part only without supervised ranking process.
It generates 700 proposals for each image on average. Such
proposals are extracted on both the input video frames and the
database images.

B. Proposal Appearance Features

We represent each proposal with DeepPyramid fea-
tures [14]. To this end, the input image is warped to fit into
9 discretized aspect ratios ranging from 0.25 to 4 with the
factor +/2. It is also up/down-sampled to construct 7-level
image pyramids with the largest dimension of the original
scale resized to 512 pixels. This generates 7 x 9 = 63
combinations, which are passed separately to the network to
generate the conv5 feature maps. In this way, each proposal
can be aligned with a 8 x 8 feature template at a proper
location, aspect ratio and scale. Flatting the template leads
to 16384-dimensional features. On the GTX1080 platform it
takes 2.4 seconds to process a frame on average.

C. Fast Distance Computation

The high-dimensional features are further embedded into a
256-bit Hamming space via [16] for speed-up. In this way
the distance computation is extremely fast: with a specialized
kd-tree [41] for hamming space kNN search, it costs only a
fraction of a second to process a frame.

VI. EXPERIMENTS

This section aims to evaluate the proposed approach through
several experiments. Across all the evaluations, object exem-
plars are discovered from the Pascal VOC 2012 [1] database,
which comprises various unfiltered Internet photos and rep-
resents real-world difficulties well. No provided annotations
are accessed except the image-level labels. For each category,
we retain up to N = 800 exemplars.

Two challenging public benchmarks are employed to
evaluate the proposed approach:

1) Youtube-Objects. This dataset is originated from

Prest et al. [52], which comprises various internet videos.
Jain and Grauman [24] and Tang et al. [62] have provided
groundtruth object segmentations for different subsets of
the original dataset. For the sake of convenience we refer
the two subsets as YTO-Jain and YTO-Tang, respectively.
Both subsets have 10 object categories from the Pascal
VOC classes, while for each video a single class is anno-
tated. YTO-Jain is composed of 126 videos, where the
objects are accurately labeled for 1 in every 10 frames.

YTO-Tang consists of 151 densely annotated videos,
while the annotations are roughly labeled on super-
voxels. Both subsets have more than 20000 frames
(up to 400 frames for each video), which are among
the largest benchmarks for video object segmentation
nowadays.

2) DAVIS. This benchmark is originated from [50],
comprising 50 high-quality videos with 3455 frames
in total. Each video contains a primary foreground
object, which is densely and accurately annotated.
Various real-world object categories are present spanning
humans, animals, vehicles, etc. Note that most categories
have consistent counterparts using the Pascal VOC class
definition. For those not, we assign them with the closest
category (e.g., camel, elephant and rhino are assigned
to cow category).

We comprehensively compare the proposed approach
(denoted as SPS) with 16 existing automatic video object
segmentation approaches. According to the type of annotations
they use, we categorize them into 4 groups:

1) UN group. This group contains 9 approaches which rely
on bottom-up saliency and/or motion cues while do not
require annotated data. These approaches are KEY [32],
MSG [44], TRC [11], LTV [45], FST [47], NLC [9],
SAG [67], CVOS [64] and ACO [26].

2) SL group. This group contains 2 approaches that assume
models learned with manual segmentations. It includes
FCN [36] and SCV [66], which are both trained with the
Pascal VOC 2012 dataset.

3) LL group. This group contains 3 approaches that assume
image/video-level labels as supervision. It includes
CRANE [62], MWS [35] and WCV [21]. The first two
do not assume additional data, while WCV is also trained
with the weakly labeled Pascal VOC images.

4) BL group. This group is composed of 2 approaches that
require detectors learned with bounding-box annotations,
including DET [70] and DTM [5]. These annotations
come from the Pascal VOC 2012 dataset. SPS falls into
this group as it adopts salient object proposals pre-trained
with bounding-box annotations. However, we emphasize
that SPS only assumes image/video labels when applied
to a novel category.

On the Youtube-Objects dataset two evaluation metrics are
employed, following previous works: 1) mean Intersection-
over-Union scores (mloU), also known as the Jaccard Index,
computed as the number of intersected pixels divided by that
of the union pixels between the predicted and the groundtruth
segmentation masks for each video, and averaged across all the
videos; 2) mean Average Precision (mAP), computed from the
soft foreground segmentation probabilities before thresholding.
On the DAVIS dataset we directly apply the provided metrics
J, F and 7T that evaluate the segmented regions, contours and
the temporal stability across frames [50].

Unless specifically explained, the number of nearest exem-
plars K¢ is set to 200 among the experiments. We also provide
evaluations to analyze the performance of our approach with
other values. The kernel bandwidths y, and y; are empiri-
cally set to 80 and 10, respectively. Parameters for proposal



TABLE I
PERFORMANCE ON YTO-JAIN DATASET IN MIOoU. ALONG EACH COLUMN, BOLD HIGHLIGHTS THE TOP PLACE WHILE UNDERLINE THE SECOND

Group Model  Aeroplane  Bird Boat Car Cat Cow Dog  Horse Motorbike  Train  Average
LTV 0.137 0.122  0.108 0.237 0.186 0.163 0.180 0.115 0.106 0.196 0.155
UN FST 0.709 0.706 0425 0.652 0521 0445 0.653 0.535 0.442 0.296 0.538
ACO 0.630 0.690 0400 0.610 0480 0.460 0.670  0.530 0.470 0.380 0.530
SL FCN 0.635 0.698 0464 0.699 0.557 0.549 0595 0515 0.445 0.563 0.572
SCV 0.693 0.761 0.572 0.704 0.677 0.597 0.642 0.571 0.441 0.579 0.623
LL WCV - - - - - - - - - - 0.586
DET 0.698 0.677 0515 0.695 0408 0.599 0.614 0512 0.435 0.525 0.568
BL DTM 0.744 0.721 0.585 0.600 0457 0.612 0552 0.566 0.421 0.367 0.562
SPS 0.784 0.712 0562 0772  0.559 0.589 0.618  0.565 0.515 0.549 0.622
TABLE II

PERFORMANCE ON YTO-TANG SUBSET IN MAP

CRANE
0.425

MWS
0.461

SPS
0.712

mAP

selection 4 and 7 are set to 3 and 0.5. Their impacts are also
systematically analyzed with additional experiments.

A. Comparisons With State-of-the-Arts

In the first experiment, we compare the proposed approach
with the other 11 approaches with available codes or results
on the Youtube-Objects dataset. The results are summarized
in Table I and Table II, and several representative examples
are shown in Fig. 7. From Table I, we find that the UL group
performs very well although both the object localization and
segmentation are heuristically designed. FST and ACO achieve
high-quality results on the categories with salient motions,
e.g., animals. However, their performance may significantly
drop if no such intrinsic information could be utilized, e.g. the
objects are nearly static and do not have obvious motion.

The previous BL models improve over the UN group by at
least 0.03, notably on vehicle categories but slightly or even
negatively on animals. While the former is explained by the
power of object detections, the latter indicates that previous BL
models somewhat have difficulty handling non-rigid objects
well due to the imperfect detections on these categories.

The SL group demonstrates high-quality results as expected.
With the detailed annotations and strong learning techniques,
this group performs well on various categories. SCV achieves
the leading results among the comparisons. Despite the supe-
rior performance, however, SCV still suffers several practical
limitations, such as the dependence on segmented training data
for each category, and the requirement of multiple relelvant
input videos to be simultaneously processed.

The performance of our approach SPS closely follows SCV,
with a small gap within 0.1%. Moreover, SPS assumes only
weakly annotated data in practice, and is applicable to a
single video. Compared with the other approaches in the BL
group, the number of SPS is substantially higher. Remark-
ably, the proposed approach does not seem to have severe
performance degeneration on non-rigid categories. We suspect

that while fitting a global template for non-rigid objects is
challenging, the proposed matching algorithm finds locally
similar matches, which effectively avoids missing detection
in several videos.

Looking into in the LL group, we find that WCV performs
impressively well, even surpassing the strong FCN baseline.
With slight additional supervisions SPS improves over WCV
by a large margin. Compared with two previous approaches
CRANE and MWC that do not assume additional data, SPS
has at least 54% relative improvements.

In the second experiment, we provide additional benchmark-
ing results on a subset of the original frames of the YTO-Jain
dataset, which comprises the annotated frames only. It leads to
10x downsampling for each video, which simulates fast transi-
tions of scales/viewpoints well. We denote this smaller dataset
as YTO-Jain-Sub and summarize the results in Table III. In this
setting, the performance of previous approaches degenerates
greatly. Actually, many previous approaches assume that the
scenes evolve smoothly, which may not hold in case of such
fast motion. In contrast, SPS does not make such assumption
but instead relies on global reasoning, thus is not very sensitive
to this issue (i.e., from 0.622 to 0.603). Later we show that
SPS can indeed perform reliably under various difficulties.

In the third experiment, we compare the proposed approach
with 7 automatic approaches and 7 interactive ones on the
DAVIS datset. The quantative and qualitive comparisons are
shown in Table IV and Fig. 8, respectively. Table IV illustrates
that the proposed approach outperforms existing unsupervised
approaches by a large margin in terms of region and boundary
accuracies. We find that the proposed approach handles fast
transitions well on this dataset (e.g., see the results in Fig. 8).
Capable of segmenting the objects in these cases leads to a
significantly improved recall (i.e., 0.845 versus the previous
best performance 0.800, in Jaccard Recall).

The proposed approach performs better than or com-
parably with several interactive approaches, although it is
automatic and does not need to be trained with costly anno-
tations. We notice that many interactive approaches may
have difficulty propagating the segmentations to the frames
where viewpoint or scale greatly changes (e.g., the drift and
motocross videos). SPS is robust to these cases by utilizing
the information provided by multiple frames jointly instead of
sequentially.



TABLE III
PERFORMANCE ON YTO-JAIN-SUB DATASET IN MIOU. ALONG EACH COLUMN, BOLD HIGHLIGHTS THE TOP PLACE WHILE UNDERLINE THE SECOND

Group Model Aeroplane  Bird  Boat Car Cat Cow Dog  Horse Motorbike  Train  Average

FST 0.485 0.641 0315 0365 0309 0337 0386 0.323 0.170 0.341 0.367
UN NLC 0.666 0599 0.263 0342 0275 0330 0453 0.375 0.314 0.470 0.409
SAG 0.543 0.551 0339 0505 0344 0413 0387 0.371 0.311 0.275 0.404
ACO 0.575 0.607 0374 0311 0360 0312 0458 0.407 0.217 0.342 0.396
SL SCV 0.655 0.634 0358 0495 0424 0408 0452 0.349 0.462 0.365 0.478
BL DET 0.580 0.679 0457 0.608 0367 0.588 0.539  0.469 0.443 0.485 0.521
SPS 0.781 0.698 0.521 0.675 0.528 0.584 0.631 0.528 0.544 0.532 0.602

Fig. 7. Representative segmentation results generated by the proposed approach on the Youtube-Objects dataset. Object segmentations are indicated as colored
regions, and the selected localization proposals are marked with yellow boxes. In the last row, we show two typical failure modes of our approach, including
multi-object instances and detection failures. More results are included in the supplementary material. (Best viewed in color.)

TABLE IV

PERFORMANCE ON THE DAVIS DATASET, FOLLOWING THE CONVENTIONAL METRICS. THE ARROW 1 (| ) INDICATES THAT RESULTS ARE BETTER IF
THE NUMBER IS HIGHER (LOWER). FOR EACH ROW, BOLD HIGHLIGHTS THE TOP PLACE WHILE UNDERLINE THE SECOND

Model SPS FST NLC MSG KEY CVOS TRC SAL OFL BVS FCP JMP HVS SEA TSP
Interaction? N N N N N N N N Y Y Y Y Y Y Y

J Mean 1 0.679 0575 0.641 0543 0569 0514 0501 0426 | 0711 0.665 0.631 0.607 0.596 0.556 0.358
J Recall 1 0845 0.652 0.731 0.636 0.671 0581 0.560 0.386 | 0.800 0.764 0.778 0.693 0.698 0.606  0.388
J Decay | 0.052 0.044 0.086 0.028 0.075 0.127 0.050 0.084 | 0227 0.260 0.031 0372 0.197 0355 0.385

F Mean 1 0.642 0.536 0.593 0525 0503 0490 0478 0.383 | 0.679 0.656 0.546 0.586 0.576 0.533 0.346
F Recall 1 0.759 0579 0.658 0.613 0534 0578 0519 0.264 | 0.780 0.774 0.604 0.656 0.712 0559 0.329
F Decay | 0.070  0.065 0.086 0.057 0.079 0.138  0.066 0.072 | 0240 0.236 0.039 0373 0.202 0339 0.388

T (GT=9.5) ] 0480 0293 0366 0263 0210 0256 0345 0.616 | 0.224 0317 0294 0.136 0305 0.141 0.333

The metric that our approach fails to ascend the leading not enforce temporal smoothness of the results. This, how-
places is the temporal stability (T). To keep a clear focus, ever, is straightforward to improve via constraints established
we adopt a rather simplified segmentation pipeline that does between adjacent frames, e.g., following [32], [51], and [65].
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Fig. 8. Visual comparisons of the proposed approach with several leading approaches on two videos from the DAVIS dataset. Compared with other approaches,
the proposed approach benefits from high-quality localizations and is robust to viewpoint/scale transitions and fast motion.
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Fig. 9. Attribute-based evaluations on the DAVIS dataset. We consider 9 attributes: AC (Appearance Change), BC (Background Clutter), CS (Camera Shake),
DB (dynamic background), DEF (non-linear deformation), FM (fast motion), MB (motion blur), OCC (occlusions) and SV (scale variation). For each attribute,
we show the mean and variance of Jaccard scores of the proposed approach and state-of-the-art unsupervised/interactive approaches. (Best viewed in color.)

TABLE V

STEP-WISE PERFORMANCE OF THE PROPOSED APPROACH ON YTO-JAIN-SUB DATASET, IN MIOU. ALONG
EACH COLUMN, BOLD HIGHLIGHTS THE TOP PLACE WHILE UNDERLINE THE SECOND

Step Aeroplane  Bird Boat Car Cat Cow Dog  Horse Motorbike  Train  Average
Best proposal 0.519 0516  0.341 0555 0373 0460 0459 0424 0.430 0.431 0.451
After region voting 0.535 0.530 0.345 0566 0.383 0482 0465 0424 0.461 0.440 0.463
After proposal selection 0.534 0.648 0.387 0.568 0449 0493 0.516 0.441 0.465 0.447 0.495
After refinement 0.781 0.698 0.521 0.675 0.528 0.584 0.631 0.528 0.544 0.532 0.602

B. Performance Analysis

Beyond the comparisons with the state-of-the-arts, we con-
duct additional experiments to show how our approach works
under various scenarios. At first, we report the performance
on the videos of various difficulty attributes provided by the
DAVIS dataset, and summarize the results in Fig. 9.

From these results, we conclude that the proposed approach
performs the best w.xz. most attributes, and at least comparably
w.r.t. all. Particularly, our approach is most effective to handle
Appearance Change (AC), Fast Motion (FM) and Scale Vari-
ation (SV), which matches the observations on the YTO-Jain-
Sub dataset. We find that many previous interactive approaches
are less effective when the appearance of foreground objects

change significantly, while many unsupervised approaches
fail to localize the objects when the background also has
salient motion. Our approach shows stable performance in both
cases.

In the second experiment, we conduct a step-by-step abla-
tion study to analyze the contributions of different components
of our approach on the YTO-Jain-Sub dataset, as shown
in Table V. The Best proposal baseline naively selects the
highest scored proposal on each frame as the localization
results. After incorporating the proposed region voting algo-
rithm, the results are consistently improved, which generalizes
across almost all the categories. The full model which further
combines consistent matching improves the results by 0.032.
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Fig. 10. Performance of the localization proposal generation module

evaluated on the YTO-Jain-Sub dataset. “A” and “S” represent baseline
algorithms which separately use appearance and spatial context, while “A+S”
is the full model. Left: the mean Average Precisions (mAPs) of the generated
localization proposals as a function of the number of neighbor exemplars K.
Right: the precision-recall curves at K = 200.

The refinement step has a significant impact on the final per-
formance since it produces much more accurate segmentation
boundaries.

Beyond the ablation study, we look in greater details into the
proposed localization proposal generation module. To this end
we fit bounding boxes for each ground-truth object from the
YTO-Jain dataset, and evaluate the localization performance.
The results are summarized in Fig. 10. When the number of
exemplars increases, the performance of appearance matching
baseline consistently improves. This matches our assumption
that a large number of exemplars are necessary to handle noisy
exemplars. The combined results (i.e., “A+S”) are much better
than those generated by individual pipelines. However, using
too many exemplars may unexpectedly harm the performance
of spatial context matching. We suspect that when matching
dissimilar exemplars, the predictions made by spatial context
matching becomes unreliable due to ambiguous region corre-
spondences. This, however, only leads to slight degeneration
while the overall performance does not actively response to it.

The success of the proposed approach partly relies on the
state-of-the-art SOD object proposals [69]. We thus investi-
gate two other state-of-the-art proposal generators: COB [40]
and UDOL [7]. COB is pretrained with annotated train-
ing data, while UDOL is an unsupervised co-localization
approach. We retain the top 1 proposal from each image
using the rankings output by both approaches, to generate
results of high precision. As these approaches emphasize on
higher recall rather than precision, retaining more proposals
may introduce many noisy proposals and greatly harm the
discovered exemplars.

The results are shown in Fig. 11. Among the comparisons,
SOD achieves the best precision since it is designed to extract
a few salient objects. This is in contrast to COB and UDOL
which aim to localize all the target objects. As good precision
is more important than recall for exemplar discovery, SOD
achieves the best final results. Manifold ranking consistently
improves the localization mAP for each approach, as well as
the final segmentation results. Interestingly, SPS achieves sim-
ilar segmentation performance even using unsupervised pro-
posals. As suggested by the previous experiment, the proposed
localization module is robust and shows stable performance
even with a large number of noisy exemplars.

Proposals mAP  mloU 0s % con
uboL
SOD 0.381 0.587 0.8 o
(+MR) 0.430 0.602 Sori™ ~~ “UDOLMR
COB 0187 0562  8os. ™.
(+MR) 0.230  0.571 & ash Sho Srereeeee
UDOL  0.109 0.561 oal el
(+MR)  0.137  0.579 o -
’ 0.2 0.4 0.6 0.8
Recall
Fig. 11. Evaluating the impact of proposal generators. Left: Performances of

using different proposals without and with manifold ranking (+MR). We show
localization mAPs on the trainval set of the Pascal VOC 2012 dataset and the
segmentation mloUs on the YTO-Jain-Sub dataset. Right: the precision-recall
curves for exemplar localization on the Pascal VOC2012 dataset.

Accuracy

Fig. 12. Performances on the YTO-Jain-Sub dataset as a function of different
settings of the proposal selection parameters, measured in mIoU. The settings
that correspond to the best performance and the performance reported in our
benchmarking (see Table III) are marked with text. (Best viewed in color.)

The remaining important question is how the parame-
ters 4 and 7 introduced by our proposal selection algorithm
impacts the final results. To this end, we vary their values
and report the performances on the YTO-Jain-Sub dataset
in Fig. 12. We observe that the proposed approach is not
very sensitive to the choice of A, which controls the weight of
global matching. The choice of the probability that a proposal
is inactive for voting, namely 7, is better around 0.5. When it
is small, false positive votes will be introduced that make the
selection unreliable. Large value close to 1 removes the effect
of region voting. In this way, the algorithm turns to selecting
the static background as they match more consistently than
the foreground objects.

We report the time consumption of each individual stage of
the proposed approach in Table VI. To process a frame, our
approach takes 16 seconds on average using a workstation
with 32GB memory, 3.4GHz CPU and a GTX1080 graph-
ics card. On the same platform, it runs much faster than
previous top-performing approaches SCV (& half a minute)
and DET (> 2 minutes). Such performance is even com-
parable with several recent interactive approaches, although
our approach localizes the object automatically. For example,
MaskTrack [48] and FCP [51] are reported to cost 12 and
16 seconds, respectively.

Our implementation used for timing is not strictly optimized
with most components performed in a single thread. To further
improve the speed, proposal and feature extraction could be
replaced with faster ones (e.g. [54]), while matching massive
exemplars can benefit from parallelization platforms.



TABLE VI

PER-FRAME RUNNING TIME OF THE PROPOSED APPROACH
AVERAGED ON THE YTO-JAIN-SUB DATASET

Stage Time (secs/frame)
Proposals & optical flows 5.27
Features with Embedding 242

Exemplar matching 6.50
Proposal selection 0.17
Pixel-level refinement 1.76

VII. CONCLUSION

In this paper we explore weakly labeled images to address
video object segmentation. To this end, a robust and efficient
algorithm is firstly proposed for exemplar-driven object local-
ization. We further observe that the second-order relationships
among proposals are helpful for accurate localization, and
propose a proposal selection algorithm that benefits from well-
studied optimization theories. The proposed approach achieves
impressive performance on two challenging benchmarks.

The results obtained so far indicate that high-quality results
for video object segmentation could be achieved with scalable
approaches that do not rely on massive accurate annotations.
Our future work will address several limitations and further
challenges. First, to simplify this task, the proposed approach
extracts a single object in the video following many weakly
supervised approaches [7], [59]. Thus, it would be interesting
to enhance our approach to segment multiple classes/objects in
a video. Second, we are also interested to extend the proposed
image-to-video matching algorithm to address video-to-video
matching, and investigate efficient iterative methodologies for
joint object segmentation in a collection of videos.
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