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Abstract—Single image dehazing, which aims to recover the
clear image solely from an input hazy or foggy image, is a
challenging ill-posed problem. Analyzing existing approaches, the
common key step is to estimate the haze density of each pixel.
To this end, various approaches often heuristically designed haze-
relevant features. Several recent works also automatically learn
the features via directly exploiting convolutional neural networks
(CNN). However, it may be insufficient to fully capture the
intrinsic attributes of hazy images. To obtain effective features
for single image dehazing, this paper presents a novel ranking
convolutional neural network (Ranking-CNN). In Ranking-CNN,
a novel ranking layer is proposed to extend the structure of
CNN so that the statistical and structural attributes of hazy
images can be simultaneously captured. By training Ranking-
CNN in a well-designed manner, powerful haze-relevant features
can be automatically learned from massive hazy image patches.
Based on these features, haze can be effectively removed by using
a haze density prediction model trained through the random
forest regression. Experimental results show that our approach
outperforms several previous dehazing approaches on synthetic
and real-world benchmark images. Comprehensive analyses are
also conducted to interpret the proposed Ranking-CNN from both
the theoretical and experimental aspects.

Index Terms—Single image dehazing, haze-relevant features,
convolutional neural network, ranking layer.

I. INTRODUCTION

IN REAL-WORLD scenarios, small particles suspending in
the atmosphere (e.g., droplets and dusts) often scatter the

light. As a consequence, the clarity of an image would be seri-
ously degraded, which may decrease the performance of many
multi-media processing systems, e.g., content-based image re-
trieval [11]. Image enhancement methods [48], [54] can only
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alleviate this problem slightly. It is still helpful to develop effec-
tive dehazing methods to recover the clear image from an input
hazy or foggy image.

In the past decades, the problem of haze formation has been
extensively studied in atmospheric optics [47]. It is widely ac-
knowledged that a hazy image can be regarded as a convex
combination of scene radiance and atmospheric light [2], [4],
[10], [14], [32], [45], [49]. The combination coefficient is often
called the transmission. As a result, the task of image dehazing
can be formulated as recovering the scene radiance from a hazy
image by estimating the atmospheric light and the transmission.

Under this formulation, two kinds of dehazing approaches
have been proposed in the literature. Some of them propose
to dehaze an image under the assistance of additional infor-
mation, e.g., scene depth [19], images taken under different
weathers [29], [30]. However, such additional information may
not be always available, which prevents the further usage of
these dehazing approaches in many real-world scenarios. On
the contrary, some approaches propose to directly dehaze a sin-
gle image, which is an ill-posed problem since the atmospheric
light and the transmission need to be simultaneously recovered
for each image pixel. To address this issue, these approaches
often assume that the atmospheric light is constant for every
pixel in one input image, so that it can be estimated first in
a pre-processing step. After that, the dehazing process can be
simplified as a transmission estimation problem. For instance,
He et al. [14] propose the dark channel prior which is proved to
be effective in transmission estimation. Tang et al. [45] incorpo-
rate four types of features to train a regression model for trans-
mission prediction. Fattal [10] utilizes local color-lines prior
in clear images to estimate the transmission. Berman et al. [2]
further propose non-local haze-line prior. In many cases, these
approaches achieve impressive performance. However, for each
prior, there are often images which may not meet it. Therefore,
the heuristic designed priors (or features) may be insufficient to
fully capture the intrinsic attributes of hazy images.

Inspired by the impressive success of Convolutional Neural
Networks (CNN) [22], e.g., image classification/annotation
[21], [52], object detection [7], semantic segmentation [8], and
image denoising [1], [53], this paper prefers to automatically
learn the haze-relevant features from massive hazy images.
Two recent works [4], [32] also hold the same basic idea and
adopt CNN to perform image dehazing. Ren et al. [32] directly
estimate the whole transmission map from an input image under
the multi-scale FCN (fully convolutional networks) framework
[24]. Cai et al. [4] use a regression network to estimate the
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Fig. 1. Both statistical and structural attributes of image patches are useful for
dehazing. For example, the grass patches can be dehazed according to their color
statistics (i.e., the statistical attributes of image patches), while the haze over
fence can be removed according to their gradients (i.e., the structural attributes
of image patches).

transmission of each pixel from its local surrounding patch.
However, these two works mainly exploit existing layers to con-
struct their CNNs. In contrast, we propose a new layer, named
ranking layer, derived from our insight on this problem, which
can facilitate the learning process of haze-relevant features.

By analysing the mechanism of existing image dehazing
methods, we find that statistical attributes are essential, e.g.,
dark channel prior [14], haze-line prior [2] and color-lines prior
[10]. But the classical CNN, while capturing the structural at-
tributes well (e.g., the fence in Fig. 1), may lack the ability to
capture the statistical attributes (e.g., the grass in Fig. 1). To
alleviate this problem, we propose a novel ranking layer which
can be embedded in the structure of classical CNN to form
the Ranking-CNN. A Ranking-CNN can capture the structural
and statistical attributes simultaneously. As a straightforward
method, an end-to-end regression network can be established
to estimate the transmission of each pixel from its surrounding
local patch. However, since the regression target is only a real
value between (0, 1], when training the network using backward
propagation algorithm, the gradient may be small and not robust.
Therefore, it is difficult to effectively train the deep network. To
this end, the regression problem is converted into a classification
problem. Then the Ranking-CNN can be effectively trained on
massive hazy image patches, and various types of haze-relevant
features can be automatically learned. Based on these features,
the random forest is further adopted to train a regression model
so as to predict the transmission. Experimental results on plen-
tiful synthetic and real-world images show that the proposed
approach outperforms several previous outstanding approaches.

The main contributions of this paper include: First, we pro-
pose a novel ranking layer as well as its forward and backward
computations, and theoretical analyses illuminate its excellent
ability to capture statistical attributes. Second, by incorporat-
ing the ranking layer into the classical CNN, we construct a
Ranking-CNN to learn effective haze-relevant features, which
demonstrates impressive performance in image dehazing. Third,
we benchmark the proposed dehazing approach and several

state-of-the-art methods on extensive qualitative and quanti-
tative experiments, in which the proposed approach achieves
satisfactory performance.

The rest of this paper is organized as follows. Section II
presents some related works. Section III formulates the prob-
lem and overviews our pipeline. Then each step is detailedly
explained in Section IV. Finally we show the experimental re-
sults in Section V and conclude this paper in Section VI.

II. RELATED WORK

In the past two centuries, the interaction phonomenon of light
with the atmosphere has been widely studied [25], [27], [47],
which is known as atmospheric optics. Based on the physical
phonomenon, depending on whether using additional informa-
tion, there are mainly two kinds of image dehazing methods. We
then review the related works from this perspective. In addition,
we also briefly introduce several representative works on deep
neural network.

Image dehazing with additional information: Early methods
usually use additional information to dehaze images. Nayar and
Narasihan [29], [30] restore the scene structure from multiple
images captured under different weather conditions, then the
clear image can be recovered. Schechner et al. [38] observe
that the scattered atmospheric light is usually partially polar-
ized, then they take two or more images through a polarizer at
different orientations for image dehazing. Shwartz et al. [41]
automatically recover the parameters of the atmospheric light
needed by polarizer based image dehazing methods. Kopf et al.
[19] use the geometry of the scene to dehaze image via reg-
istering the hazy image into 3D scenes manually. However, as
these additional information is usually difficult to obtain, these
methods have many limitations.

Single image dehazing: As single image dehazing is an ill-
posed problem, various priors and hypotheses have been pro-
posed to tackle this problem. Oakley and Bu et al. [31] assume
a constant air-light and estimate it via finding the minimum of
a global cost function. Tan [44] removes the haze layer based
on the observations that clear images have more contrast and
the transmission tends to be smooth. Fattal [9] assumes that
the shading and transmission functions are locally statistically
uncorrelated. Tarel and Hautière [46] propose a fast algorithm
whose complexity is a linear function of the image size. Kratz
and Nishino [20] assume that the albedo and depth are statis-
tically independent, then formulate a factorial Markov random
field to estimate the transmission. He et al. [14] observe that
the lowest value of each channel in a local image patch tends
to be zero for clear images, which called dark channel prior.
Wen et al. [51] further develop the underwater dark channel
prior for image enhancement. Gibson et al. [13] investigate the
dehazing effects on image and video coding. They further [12]
use locally adaptive Wiener filter to refine the estimated density
of haze. Yan et al. [55] reduce the amplified noise in the dehazed
result image restored from dense haze. Fattal [10] utilizes the
color-lines prior in local image patch. Sulami et al. [42] apply
the color-lines prior to estimate an appropriate global constant
atmospheric light vector. Wang and Fan [50] propose a multi-



scale depth fusion (MDF) method with local Markov regular-
ization to blend multi-level details of chromaticity priors. Zhu
et al. [57] propose a color attenuation prior and further apply a
linear model for haze removal. Wang et al. [49] propose a fast
method based on linear transformation. For each prior, it can
be applied to a range of hazy images, however, there are often
images which may not meet it. To this end, this paper aims at
automatically learning information from massive data.

Recently, there are several learning-based image dehazing
methods. Tang et al. [45] train a regression model to estimate
the transmission via incorporating four types of haze-relevant
features. Two recent works [4], [32] also adopt CNN to perform
image dehazing. Ren et al. [32] directly estimate the whole
transmission map from an input image via multi-scale CNN
under the FCN framework [24]. Cai et al. [4] use a regression
network to estimate the transmission of each pixel from its sur-
rounding patch. However, these works mainly exploit existing
hand-crafted features or classical CNNs. In contrast, we propose
a novel Ranking-CNN to simultaneously capture statistical and
structure attributes, which both are essential for single image
dehazing.

Deep neural networks: Deep neural networks, also well
known as deep learning or feature learning, are more power-
ful than shallow learning algorithms [17]. Many researchers use
deep learning to perform high level computer vision tasks and
significantly improve the performance, such as image classifica-
tion [16], [21], object detection [7], [43], and semantic labelling
[5], [8], [24]. Researches also have applied deep neural net-
work to tackle low level problems and obtain promising results.
Xie et al. [53] propose the Stacked Sparse Denoising Auto-
encoders (SSDA) to perform image denoising and inpainting.
Agostinelli et al. [1] further propose adaptive multi-column
stacked sparse denoising autoencoder (AMC-SSDA) to tackle
multiple types of noise. Schuler et al. [39] train a multi-layer
perceptron to perform image deconvolution task and obtain sat-
isfactory results. Cho et al. [6] applies CNN on image matting.
And Shen et al. [40] focus on portrait matting. These works
demonstrate that the deep neural network can achieve satisfac-
tory results not only on high-level problems but also low-level
problems.

III. OVERVIEW

To dehaze an image, we first briefly formulate the formation
process of a hazy image. Under the hazy or foggy weather, the
scene radiance is scattered by the small particles suspending in
the atmosphere. With increasing scene depth, the camera sensor
captures less scene radiance but more atmosphere light. Thus,
the formation of a hazy image can be described as a convex
combination of the scene radiance J and the atmospheric light
A, which can be formulated as [30]

I (x) = J (x) t (x) + A (x) (1 − t (x)) , (1)

where I (x) is a pixel from the hazy image I and t (x) is its
transmission. As a consequence, the problem of single image
dehazing can be described as recovering the scene radianceJ (x)

from the hazy pixel I (x). From (1), we have

J (x) =
I (x) − A (x) (1 − t (x))

t (x)
. (2)

Note that the dehazing process in (2) is ideal and may require
slight variations in building the computational model for image
dehazing. From (2), we find that the dehazing problem can be
decomposed to three subproblems, including:

1) Estimate the atmospheric light A (x),
2) Predict the transmission t (x),
3) Recover scene radiance J (x).
To address these subproblems, the system framework of our

approach is shown in Fig. 2. Specifically, since transmission
prediction is often considered to be the key and most challenging
subproblem in image dehazing [10], [14], [45], we propose the
Ranking-CNN for this subproblem. Similar to the solutions in
[14], [45], we also assume that the atmospheric light is constant
for all image pixels. Then, we calculate the dark channel of the
input hazy image using the approach in [14], and the atmospheric
light A(x) at any pixel x is estimated by averaging the RGB
color of the 0.1% pixels with the largest dark channel values.

Once the atmospheric light is estimated, we only have to focus
on predicting the transmission t (x) for every pixel according
to its local features. To extract haze-relevant features, the pro-
posed Ranking-CNN extends the structure of the classical CNN
by adding a novel ranking layer so that the statistical and struc-
tural attributes of hazy image patches can be simultaneously
captured. Based on the haze-relevant features, a transmission
prediction model is then trained using the random forest regres-
sor. The random forest regressor is adopted due to its several
advantages, such as it can measure the importance of features
and avoid seriously over-fitting. This regression model can be
used to obtain the initial transmission for every pixel in the in-
put image. To avoid edge artifacts, a guided filter is applied to
refine the initial transmission, and the refined transmission is
combined with the estimated global atmospheric light for im-
age dehazing. As the Ranking-CNN model and the regression
model are trained on massive amounts of data, they are effective
for different input hazy images. Thus, we only need to train one
unique Ranking-CNN model and one unique regression model,
which are then used to dehaze any input hazy image.

IV. THE APPROACH

In this section, we first introduce what the ranking layer is
and how to add it to the structure of the classical CNN so as to
construct the Ranking-CNN. After that, we describe the imple-
mentation details of the Ranking-CNN and show how to learn
haze-relevant features. Finally, we demonstrate how to dehaze
an input image with the features extracted by the Ranking-CNN.

A. Ranking Layer

By analysing the mechanism of existing image dehazing
methods, we find that two types of attributes may influence
the performance of transmission estimation, including statisti-
cal attributes (e.g., dark channel prior [14] and color-lines prior
[10]) and structural attributes (e.g., boundaries [26]). Inspired



Fig. 2. System framework of our approach. Given a hazy image, we first estimate a global atmospheric light and use a pre-trained Ranking-CNN to extract
haze-relevant features for each pixel from its surrounding patch. After that, the initial transmission is estimated via a random forest regression model, which is
then refined through a guided filter. Finally, the clear image is recovered through single image dehazing.

Fig. 3. A ranking layer operates separately on each input feature map and
only changes the ordering of elements in each feature map other than modifying
their values. Note that a feature map is actually a 2D matrix and here we turn
them into a 1D vector by sampling elements column-wise so as to provide a
better viewing experience.

by this observation, we propose to automatically learn haze-
relevant features through CNN so as to simultaneously capture
these two types of attributes. However, CNN performs impres-
sively on capturing the structural attributes due to the usage of
convolutional layers, while it often lacks the ability to extract
statistical attributes. Thus it is necessary to modify the structure
of the classical CNN so as to enhance its ability in extracting
haze-relevant features. Toward this end, we propose to add a
ranking layer to the classical CNN so as to construct a novel
Ranking-CNN.

For a ranking layer, its input consist of a number of feature
maps, which is the same as a common layer of classical CNNs.
The proposed ranking layer retains the values of all the elements
in a feature map and only changes their ordering. The input of a
ranking layer consists of a set of feature maps, and the ranking
layer operates separately on each input feature map and output
a ranked feature map with the same dimension (as shown in
Fig. 3). Let I be an input feature map with N elements and O
be its ranked version, we denote the nth element of I and O as
In and On , respectively. As shown in Fig. 4(a), in the forward
propagation of a ranking layer, the element On corresponds
to the nth smallest element in I, whose index is denoted as
Cn , i.e., On = ICn

. To facilitate the operations in the backward
propagation, we record such pair-wise correspondences between
the elements of input and output feature maps as {(Cn , n)|1 ≤
n ≤ N}.

Fig. 4. The forward and backward propagation of the ranking layer on a
specific feature map. In the forward propagation: the ranking layer sorts all
the elements in a feature map and records the correspondence C between the
input and output feature maps. In the backward propagation: the ranking layer
propagates the partial derivatives from the output feature map to the input feature
map according to the correspondence C.

Based on the pair-wise correspondences {(Cn , n)|1 ≤ n ≤
N} between the elements of an input feature map and its output
ranked version, the backward propagation at the ranking layer
can be conducted. As the ranking layer only changes the ordering
of elements in each feature map, the partial derivatives of the
loss function L with respect to each output feature On can be
directly passed to its corresponding input feature ICn

as

∂L
∂ICn

=
∂L
∂On

. (3)

In Fig. 4(b), we pick a specific feature map and visually ex-
plain the backward propagation of the ranking layer. Note that
the ranking layer is parameter-free. No parameter needs to be
learned in the backward propagation other than passing the
derivatives.

The ranking layer operates separately on each feature map
and sorts the elements in an input feature map in ascending
order. Since the output feature map is ordered, extracting its
statistical attributes, e.g., its contrast, becomes easier. As shown
in Fig. 6(a), for various feature maps, classical CNN may need
different convolutional filters (Fig. 6(b)) to compute the contrast.



Fig. 5. The generation of training data and the structure of the Ranking-CNN. One million training patches are synthesized via adding random haze to 100 k
clear image patches sampled from 400 clear images. The Ranking-CNN is constructed by adding a ranking layer to the structure of classical CNN (C: convolution;
P: max pooling; R: ranking; F: fully-connected).

Fig. 6. An example to show how the ranking layer facilitates the statistical at-
tributes extraction, e.g., the contrast. For (a) various feature maps, classical CNN
may need (b) different convolutional filters to compute the contrast. However,
if (c) the feature maps are ranked, only (d) one unique filter is needed.

However, if every feature map is ranked (Fig. 6(c)), only one
unique convolutional filter (Fig. 6(d)) is needed to compute
the contrast. As a whole, a ranked feature map facilitates its
statistical attributes extraction. While the value of each feature,
which is actually computed through classical convolutional or
pooling operations, still reserves the structural attributes.

We finally analyse the computational complexity of the rank-
ing layer. The computational complexity of the forward prop-
agation is O(n lg(n)) serially and O(lg(n)) parallelly, since
it acctualy performs a sort operation. The computational com-
plexity of the backward propagation is O(n) serially and O(1)
parallelly, since it directly propagates the derivatives according
to the correspondence C.

B. Learning Haze-Relevant Features

Given the ranking layer and the CNN, three issues still need to
be addressed to learn haze-relevant features, including: 1) gen-
erating training data; 2) determining the structure of Ranking-
CNN; 3) optimizing the parameters of Ranking-CNN.

Due to the lack of large-scale benchmarks, it is difficult to
collect sufficient training data. Thus we address the first issue by
generating massive synthesized hazy image patches for training
the Ranking-CNN. As shown in Fig. 5, we first collect 400 clear
images from the Internet, including various types of scenes, such
as mountain, forest, grass, city, building, street scene, etc. From
these images, we randomly select 100,000 clear image patches
with the resolution 20 × 20. Based on these patches, we follow

the formation process of a hazy image in (1) to generate massive
hazy patches. Given a clear patch B, we choose 10 random
transmission tB between (0, 1] and assume that the transmission
on each small image patch is constant. Thus the hazy patches
can be synthesized via simulating the formation process of hazy
images in (1). Since the main objective of Ranking-CNN is to
learn haze-relevant features for transmission prediction, we use
the same atmosphere light for all patches in the synthesization
process (i.e., (1, 1, 1)T). Finally, we have 1,000,000 synthesized
hazy patches for learning haze-relevant features.

Before training the Ranking-CNN, we have to determine its
structure. As shown in Fig. 5, our Ranking-CNN has ten layers.
The first layer is the input layer, which includes the RGB chan-
nels of a color image patch with resolution 20 × 20. The second
layer is a convolutional layer, where the R, G, B maps are con-
volved with 5 × 5 convolutional kernels to generate 32 feature
maps with resolution 16 × 16. The third layer is a max pooling
layer that sub-samples the input feature map over each 2 × 2
non-overlapping window. The fourth layer is the ranking layer,
which operates separately on each input feature map. It sorts all
the elements in an input feature map and outputs a ranked fea-
ture map with the same dimension. Note that the elements in the
ranked feature map are in ascending order from left-top to right-
bottom. The fifth layer is a convolutional layer, which includes
32 feature maps and the convolutional kernel size is 3 × 3. The
sixth layer is also a convolutional layer same with the fifth
layer. The seventh layer is another max pooling layer which is
the same as the third layer. After this layer, we finally obtain 32
feature maps of size 2 × 2. The eighth layer, ninth layer (each
with 64 features) and the output layer (with 10 output values)
are all fully-connected layers. In our Ranking-CNN, we use rec-
tified linear unit (ReLU) activation function [28] for all convo-
lutional layers and the first fully-connected layer. For each hazy
patch B, the 10D output vector (denoted as YB) are expected to
approximate the label vector NB =

(
n1
B, n2

B, . . . , n10
B

)T
, where

ni
B ∈ {0, 1} is a binary variable that can be calculated as

ni
B =

{
1, if tB ∈ (i/10 − 0.1, i/10]

0, otherwise
. (4)

In other words, we treat the Ranking-CNN as a multi-class
classifier and try to optimize its parameters via maximizing the
classification accuracy.



Intuitively, we can train an end-to-end network that predicts
the transmission by replacing the output layer with a linear re-
gression layer. However, since the output of the linear regression
layer is only a variable varying between (0, 1], it is difficult to
effectively train the deep network. To facilitate the training pro-
cess, we adopt a two-stage training scheme. That is, we first
convert the problem to a 10-category classification problem and
train a Ranking-CNN model for classification. After that, the
output layer is discarded and the output of the second fully-
connected layer is used as features for training a random forest
regressor to predict the transmission. In this manner, the training
process of the Ranking-CNN is easier and the learned features,
when they are combined with the random forest regressor, still
have impressive performance in image dehazing.

To train the Ranking-CNN model, we minimize a soft-max
loss function to optimize the parameters in the network. The
loss function is defined as

L
(
NB,YB

)
= − log

(
eyj

B
∑10

i=1 ey i
B

)

, (5)

where yi
B is the ith element of YB, and j is the index that nj

B = 1.
To optimize the parameters in Ranking-CNN, we use the back-
propagation algorithm with stochastic gradient descent solver
[22]. We set the initial learning rate rl0 as 0.01, the momentum
as 0.9, the mini-batch size as 64. As shown in previous literatures
[4], [32], it is helpful to decrease the learning rate along with
the training process. Therefore, we update the learning rate as

rl = rl0 × (1 + 0.0001 × iter)−0.75 , (6)

where iter is the index of training iteration on each mini-batch.
In the experiments, we perform 100 epoches on the whole train-
ing data, and the 64D output of the second fully-connected layer
are used for transmission prediction.

C. Image Dehazing

Based on the learned features, we further use the Random
Forest [3] to learn a regression model between the transmission
t and the haze-relevant features. Our random forest model has
200 trees and each tree random selects 1/3 feature dimensions.
For efficiency, we random select 1/100 hazy image patches
(i.e., 10,000) to train the regression model. Note that we set the
atmospheric light as a constant vector (i.e., (1, 1, 1)T) during
training process. To relax this condition, we first apply white
balance on the input image using our estimated atmospheric
light A. In our approach, white balance is applied by dividing
each channel c of the input image by the corresponding channel
of the estimated A as

I′c (x) =
Ic (x)
Ac (x)

=
Jc (x)
Ac (x)

t(x) + (1 − t(x)). (7)

Thus I′ can be regarded to have atmospheric light of (1, 1, 1)T

and the transmissions of I′ and I are the same.
In the training data synthesizing process, we also assume that

the transmission coefficients are locally consistent. However, we
do not hold this assumption in the dehazing process. Therefore,
we extract the haze-relevant features for every pixel in input

image via selecting a 20 × 20 patch centred at the pixel using
the Ranking-CNN. With these features, the regression model is
applied to estimate the transmission t (x) for each pixel x. To
avoid the artifacts near object edges, we further use guided filter
[15] to smooth the initial estimated transmission for efficiency.
Laplacian matting [23] also can be used instead to get more
satisfactory results around edges. After obtaining the transmis-
sion t(x) and atmosphere light A(x) for each pixel x, we can
dehaze the input image by applying the ideal dehazing process
in (2). Moreover, to avoid the strong fluctuation of recovered
pixel when the transmission is very small, we set t(x) = 0.05 if
t(x) < 0.05. Thus we can get the clear image as

J (x) =
I (x) − A (x)

max (t (x) , 0.05)
+ A (x) . (8)

As the exposure is determined according to the hazy scene,
the dehazed image usually tends to be underexposure, i.e., the
luminance Jl(x) of J(x) is usually much less than the luminance
Il(x) of I(x). Therefore, we adaptively increase the expos-

ure as J∗ (x) = λJ (x), where 1 ≤ λ ≤
∑

x Il (x)∑
x J l (x) is the expo-

sure factor. As there are many regions which tend to be gray in
the input hazy image, the dehazed image will be overexposure

if λ =
∑

x Il (x)∑
x J l (x) . As a compromise, the log function is used in

our method and

λ = log

( ∑
x Il (x)

∑
x Jl (x)

)
+ 1. (9)

Then, the exposure can be increased and overexposure also can
be avoided at the same time.

V. EXPERIMENTS

We first compare the dehazed results of our method and sev-
eral previous methods on both synthetic and real benchmark
images. Then we exploit the influence of the ranking layer and
compare the features learned by our Ranking-CNN with previ-
ous haze-relevant features quantitatively.

A. Comparisons With Previous Approaches

The dehazed results and comparisons can be found in
Figs. 7–9, which are achieved respectively on synthetic hazy
images with ground-truth clear images and transmissions, cap-
tured hazy images with known clear images, and real benchmark
hazy images without ground-truth. The experimental results
show that, our method can achieve better results compared with
several previous methods both quantitatively and qualitatively.
In our experiments, we implement our Ranking-CNN to learn
haze-relevant features based on the open source deep learning
framework Caffe [18]. We reimplement the methods of [14] and
[45], and directly use the published results or codes of other
referenced methods, such as [2], [4], [10], [32], [57].

In order to perform quantitative comparison, like some previ-
ous methods [4], [32], [45], we synthesize ten hazy images based
on stereo benchmark images published in [35]–[37], which is
denoted as Dataset-Syn. Each image from this dataset has two
types of ground-truth, including a haze-free image and a ground-
truth transmission map. To be fair, we follow the experiments



Fig. 7. Representative dehazed results on Dataset-Syn. We can see that, Zhu et al. [57] usually under estimate the transmission, while [14] and [45] usually over
estimate the haze, such as the light pink pig, the light brown heads, the red teddy and the gray areas.

Fig. 8. Representative dehazed results on Dataset-Cap. We can see that our method can achieve satisfactory results on images with light haze. These results
illustrate the robustness of our method.

set-up in [45] and set the transmission t(x) = 0.8 × d(x) for
each pixel x, where d(x) is the disparity. Table I shows the L1
error comparisons in transmission and image of our method and
[2], [4], [14], [32], [45], [57]. The L1 error in transmission is
calculated between the estimated and ground-truth transmission
maps, and the L1 error in image is calculated between the de-
hazed and haze-free images. Overall, as can be seen, our method
achieves the best results and has over 10% lower average L1
error in estimated transmission and dehazed image compared
with these methods. There are two dehazed results illustrated in
Fig. 7, we can see that [14] usually over estimate the haze, such
as the light pink pig, the light brown heads, the red teddy and
the gray areas. [45] also suffers this problem as the multi-scale
dark channel features are the most important features in their

method. On the contrary, our method suffers less over estimated
problems.

Though the Dataset-Syn are synthesized following the ab-
stractly formulation of hazy images (1), however, the physical
process may not follow it precisely. To this end, inspired by the
construction of image matting benchmark [33], [34], we design
a process to directly capture a hazy image as well as its corre-
sponding clear version. We first use a Lenovo 22” monitor to
display each clear image in Dataset-Syn, and capture it by a Can-
non 650D DSLR camera. After that, an ultrasonic humidifier is
used to fill vapour between the monitor and the camera. Then
the camera captures the hazy image with all the other settings
and parameters unchanged. Except the vapour, the environment
settings and camera parameters are unchanged, therefore the



Fig. 9. Representative results obtained by our approach and previous methods. The results show that, our method can achieve visual better results on a lot of real
benchmark images. Specially, our method suffers less over estimating problems or color shifts, such as the faces of the two actresses, and the green trees.

captured clear image can be regarded as the ground-truth of its
corresponding captured hazy image. This captured dataset is de-
noted as Dataset-Cap. Table II shows the L1 error comparisons
in image of our method and [2], [4], [14], [32], [45], [57]. Our
method still achieves the best results. There are two dehazed
results illustrated in Fig. 8. As Figs. 7 and 8 show, the hazy of
Dataset-Syn is dense and it of Dataset-Cap is light. Our method
can achieve the best performance on both these two datasets,

which means that our method performs robust under different
hazy density than other methods.

Finally, we conduct a subjective test to visually compare the
results of our method, [14], [45], [10], [2], [4] and [32] on 69
benchmark images. For a fair comparison, we use the results
which are published by [14], [45], [10], and generate the results
using the codes which are published by [2], [4], [32]. Since each
paper only publishes results on a portion of the 69 images, we



TABLE I
THE L1 ERRORS ON STEREO DATASET-SYN

He et al. [14] Tang et al. [45] Zhu et al. [57] Berman et al. [2] Ren et al. [32] Cai et al. [4] Ours

Aloe 0.100 / 0.191 0.060 / 0.087 0.175 / 0.141 0.060 / 0.086 −/ 0.195 0.089 / 0.096 0.051 / 0.070
Art 0.116 / 0.176 0.077 / 0.098 0.114 / 0.145 0.099 / 0.123 −/ 0.210 0.094 / 0.122 0.061 / 0.076
Barn 0.079 / 0.089 0.061 / 0.063 0.075 / 0.079 0.128 / 0.049 −/ 0.174 0.075 / 0.079 0.051 / 0.055
Bull 0.050 / 0.122 0.035 / 0.091 0.184 / 0.265 0.049 / 0.102 −/ 0.337 0.110 / 0.202 0.023 / 0.061
Cones 0.084 / 0.102 0.043 / 0.044 0.106 / 0.110 0.055 / 0.071 −/ 0.178 0.081 / 0.087 0.034 / 0.036
Dolls 0.061 / 0.110 0.038 / 0.069 0.152 / 0.201 0.067 / 0.095 −/ 0.272 0.076 / 0.132 0.032 / 0.060
Flower 0.059 / 0.105 0.046 / 0.066 0.146 / 0.172 0.066 / 0.145 −/ 0.239 0.098 / 0.135 0.045 / 0.068
Teddy 0.092 / 0.135 0.055 / 0.060 0.124 / 0.126 0.092 / 0.125 −/ 0.167 0.082 / 0.089 0.054 / 0.061
Tsukuba 0.068 / 0.093 0.077 / 0.123 0.173 / 0.253 0.060 / 0.113 −/ 0.329 0.117 / 0.182 0.077 / 0.125
Venus 0.042 / 0.074 0.046 / 0.103 0.159 / 0.239 0.051 / 0.163 −/ 0.310 0.114 / 0.196 0.035 / 0.079
Average 0.075 / 0.120 0.053 / 0.080 0.141 / 0.173 0.073 / 0.107 −/ 0.241 0.094 / 0.132 0.046 / 0.069

Left values indicate L1 error in transmission. Right values indicate L1 error in image.

TABLE II
THE L1 ERRORS ON DATASET-CAP

He et al. [14] Tang et al. [45] Zhu et al. [57] Berman et al. [2] Ren et al. [32] Cai et al. [4] Ours

Aloe 0.169 0.175 0.091 0.130 0.169 0.313 0.134
Art 0.136 0.087 0.073 0.090 0.079 0.231 0.064
Barn 0.054 0.046 0.070 0.087 0.061 0.117 0.041
Bull 0.064 0.075 0.046 0.065 0.087 0.206 0.053
Cones 0.093 0.064 0.053 0.057 0.104 0.213 0.057
Dolls 0.103 0.074 0.066 0.083 0.089 0.201 0.057
Flower 0.070 0.049 0.052 0.080 0.068 0.212 0.037
Teddy 0.126 0.108 0.067 0.141 0.129 0.197 0.089
Tsukuba 0.065 0.060 0.072 0.057 0.655 0.259 0.048
Venus 0.048 0.059 0.053 0.105 0.071 0.190 0.050
Average 0.093 0.080 0.064 0.089 0.092 0.214 0.063

Values indicate L1 error in image.

obtain 1012 pairs of dehazed results in total. Fifteen subjects are
invited to perform this experiment. All these subjects have nor-
mal or corrected normal visual acuity and normal color vision.
The results are shown on a normal 22′′ display with 1680 × 1050
resolution. The display is placed in a room with fluorescent
lamps. On each of such pair-wise comparisons, four images are
shown in a 2 × 2 grid. The top-left is the input hazy image. The
top-right is the ground truth hazy free image (if it exists, oth-
erwise the input hazy image). The bottom-left and bottom-right
are the dehazed results from two methods, each result is random
shown in left or right. Each image is shown with no more than
640 × 480 resolution, which also can be shown with its original
resolution in a new window by click. Each subject is requested
to observe each comparison and determine which dehazed re-
sult is better. Averagely, each subject takes about 75 minutes to
perform the test. Note that the methods that are being compared
are blind to the subjects. Among all these 1012 × 16 = 16192
pair-wise comparisons, our method achieves the first place and
outperforms the other methods for 3221 times, while [14] takes
the second place (2649 times). These results, together with the
objective performance, indicate that our method performs the
best in both objective and subjective experiments compared with
the several referenced methods.

We also show some dehazed results on real world images in
Fig. 9. It shows that, our method can achieve visual better results
on a lot of real benchmark images. Specially, our method suffers

less over estimating problems and color shifts, such as the faces
of the actresses and the green trees.

B. Performance Analysis

Beyond the performance comparisons, in this section we con-
duct a number of small experiments to validate the performance
of our approach from multiple perspectives. For quantitatively
evaluation, we further generate 400,000 hazy patches with syn-
thetic transmission as validation set.

Features comparison: In the first experiment, we compare
the performance of various types of features, including the 64D
features learned by the Ranking-CNN (denoted as FR ), the 64D
features learned by the classical CNN (only remove the ranking
layer in the Ranking-CNN and keep the other experimental se-
tups unchanged, denoted as FC ), the 325D features designed by
[45] (denoted as FT ) and the combination of FT and FR (de-
noted as FT +R ). Moreover, the Ranking-CNN model and clas-
sical CNN model are respectively obtained after 100 epoches
on the identical training set. The parameters of each layer are
initialized via xavier method. The 325D features of FT consist
of multi-scale dark channel priors and local max contrasts, hue
disparity and multi-scale local max saturation. For efficiency is-
sue, we random select 1/100 training patches (i.e., 10,000) from
that are used by the Ranking-CNN to train the random forest
regression model. Fig. 10 shows the L1 error in transmission on
validation set using different combinations of the features, i.e.



Fig. 10. The L1 errors on validation set when different features are used for
dehazing. FT : features used in [45]; FC : features learned by the classical CNN;
FR : features learned by the Ranking-CNN; FT +R : the combination of FT

and FR .

Fig. 11. The importance of features learned from Ranking-CNN and features
heuristically designed in [45].

FT , FC , FR and FT +R . We can see that the features from the
Ranking-CNN outperform those from [45] by 32% in terms of
L1 error. Moreover, our Ranking-CNN features achieve about
20% better compared with the classical CNN features. If we
combine our Ranking-CNN features with the features used by
[45], the L1 error is only decreased slightly (0.001), which
means that our Ranking-CNN features not only capture most
information in the previous hand-crafted features, but also learn
more information from the massive data automatically. This ex-
periment also shows that both structural features (e.g., CNN
features) and statistical features (e.g., features used in [45]) are
useful for transmission estimation.

We further explore the importance of each dimension in
features FT +R , which consists of the 64D features from the
Ranking-CNN and 325D features used in [45]. All these fea-
tures are incorporated to train a random forest regressor, and
the importance of each feature dimension can be obtained. As
illustrated in Fig. 11, we plot the importance of each feature
dimension which can be obtained from the trained random for-
est regressor. It is obviously that our Ranking-CNN features
are more important than the previous features used in [45].
Moreover, the sum importance of the Ranking-CNN features
is 708.48, while the sum importance of the previous features

Fig. 12. The L1 error in transmission on the validation set using our Ranking-
CNN when the ranking layer is placed at different locations.

FT is only 47.41, which shows that the Ranking-CNN features
are powerful and remarkably outperform the previous heuristic
designed features used in [45].

We also compare the features generated from different lay-
ers by training the regression model. The L1 errors on the
same validation dataset are 0.050, 0.043 and 0.042 by using
the 128D features generated from the second pooling layer, the
64D features generated from the first fully-connected layer and
the 64D features generated from the second fully-connected
layer, respectively. This may imply that the features from
deeper layers are more powerful. Thus we adopt the 64D
features generated from the second fully-connected layer for
transmission estimation.

The location of the ranking layer: In the third experiment, we
show the performance of the Ranking-CNN when the ranking
layer is placed at different locations. In the experiment, the
ranking layer is placed after the first convolutional layer, the first
pooling layer (as in Fig. 5), the second and third convolutional
layer, and the second pooling layer respectively. Fig. 12 shows
the L1 error in transmission on the validation set respectively
after 20 training epoches. We can see that when the ranking
layer is placed at the fourth layer (after 1st pooling layer), our
dehazing model achieves the minimal L1 error. To explain this
phenomena, we rethink the problem from another perspective:
what features will be extracted without the ranking layer? As
state in [56], the shallow layers of the classical CNN extract
low-level features like boundaries and contrasts, while the deep
layers extract high-level features like patterns and objects. In
existing studies haze has been proved to be tightly correlated
with low-level structural features like boundaries [26] as well as
the statistical information like dark channel prior [14] and color-
lines prior [10]. As the ranking layer only re-ranks the order
of the features and keeps the values unchanged, the low-level
structural informations of the input image still can be maintained
in the Ranking-CNN. By inserting the ranking layer after the first
pooling layer, the shallow layers before the ranking layer can
make full use of the low-level structural features like boundaries.
While additional statistical information also can be incorporated
more easily after the ranking operations. By fusing both the
low-level structural information and statistical information, the
proposed method can achieve the best performance by placing
the ranking layer at the fourth layer.



Fig. 13. The classification accuracy on the validation dataset when two rank-
ing layers are placed at all possible locations in CNN.

Fig. 14. The visualization of 64 filters randomly sampled from the second
convolutional layer of the Ranking-CNN.

In the fourth experiment, we exploit the performance of the
Ranking-CNN that uses two ranking layers. The two ranking
layers are placed at all possible locations in the CNN. As shown
in Fig. 13, the best performance is achieved by placing one
ranking layer at the fourth layer (i.e., after the first pooling
layer) and the other one at the seventh layer (i.e., after the sec-
ond convolutional layer). However, the performance improve-
ment, compared with the Ranking-CNN with only one ranking
layer, is marginal (about 0.8% on the validation dataset, after
20 epoches). Considering the additional computational cost in
the ranking layer, we still adopt one ranking layer for image
dehazing.

Visualize the network: In the fifth experiment, we try to ex-
plain why the features learned by the Ranking-CNN are useful
for image dehazing. We randomly select and visualize 64 fil-
ters from the second convolutional layer in Fig. 14. We can
see that these filters actually provide cues on which elements
in a local patch of a feature map should be referred to in ex-
tracting haze-relevant features. For instance, the filter at the
left-top corner may imply that the largest value in a local patch
should be considered for extracting haze-relevant features. It is

Fig. 15. The classification accuracy of two Ranking-CNN models on the same
validation set, which are trained on one million or two million synthetic training
samples, respectively. We can see that more training data generally bring better
performance.

Fig. 16. The classification accuracy of our Ranking-CNN when different
number of epoches are performed in the training process. Our Ranking-CNN
can converge as quickly as classical CNN.

somehow similar to the mechanism of dark channel prior, while
the main difference is that various types of haze-relevant fea-
tures are extracted by referring to different combinations of
elements in a local patch. In this manner, the Ranking-CNN
extracts an over-complete set of haze-relevant features, which
are then weighted and selected in the random forest regressor.
In this manner, Ranking-CNN demonstrates impressive perfor-
mance in dehazing images.

The size of training data: In the sixth experiment, we ex-
plore the influence when different numbers of synthetic training
data are used in training the Ranking-CNN model. As shown in
Fig. 15, the accuracy of the Ranking-CNN on the same valida-
tion set increases about 1% after 100 epoches when 2 million
training samples are used, while the training time is doubled
as well. This result implies that our proposed method still has
potential to be further improved by simply generating more
synthetic training data. Considering the efficiency in the train-
ing stage, we use 1 million training samples in all the other
experiments.

The convergence speed: In the seventh experiment, we com-
pare the convergence speeds between the Ranking-CNN and the
classical CNN. As shown in Fig. 16, the convergence speed of
the Ranking-CNN is comparable to the classical CNN. This may



be caused by the fact that in the ranking layer the partial deriva-
tives of the loss function with respect to each output feature can
be directly passed to its corresponding input feature. Since the
ranking layer is parameter-free, adding a ranking layer will not
dramatically increase the difficulties in training the network.

Different regressors: In the second experiment, we test the
performance of different types of regressors. Besides the ran-
dom forest, we select three other regressors, including linear
regressor, logistic regressor and SVM regressor(with radial ba-
sis function kernel). The L1 errors of these regressors on the
same validation dataset are 0.042 (random forest), 0.057 (lin-
ear), 0.054 (logistic) and 0.060 (SVM). As random forest regres-
sor achieves the best performance, we employ it in transmission
estimation.

The end-to-end method: To explore the performance of the
end-to-end method, we replace the output layer of our Ranking-
CNN by a linear regression layer. Then the modified Ranking-
CNN can directly predict the transmission. However, though it
is actually more efficient, the performance is unsatisfactory. In
fact, its mean L1 error on test data is 0.073, while our method
achieves 0.042. The reason may be that, when we take the
network as a regressor and train it to predict the transmission,
the L2 loss function is a common choice, which is also used
in our experiment. When we train a classification network, we
use the soft-max loss function. We can see that, the soft-max
loss function is steeper than the L2 loss function, which means
that the classification network can be updated more effectively.
Moreover, since the classification network outputs a number of
probabilities about each label other than a real value, the learned
features tend to be more various.

Running time: The last experiment is about the Running
time. Our experiments are performed on a 3.1 GHz PC with
a NVIDIA Geforce GTX980 GPU. Our feature learning and ex-
tracting algorithm is implemented based on Caffe. It takes about
400 seconds to perform one training epoch on all 1 million train-
ing samples using GPU. In feature extracting process, it takes
about 283 seconds to extract features for 1 million patches,
while classical CNN takes about 247 seconds. We use a C im-
plementation of random forest and it takes about two minutes
to train the regression model on our 10,000 training samples
using CPU, and takes about 0.25 seconds to predict initial trans-
mission of 10,000 patches. The other parts of our method are
implemented using matlab, which takes several seconds for a
typically 640 × 480 image. Our method achieve satisfactory
performance quantitatively and qualitatively, the weakness is
its efficiency. Compared with several previous methods, our
method takes more time. The main reason is that we extract
features and estimate the transmission for every pixel according
its local patch. However, as the transmissions are correlated in
a local patch, we can simultaneously estimate the transmissions
of more pixels in the future work. Then, the running time can
be decreased more than one order of magnitude.

VI. CONCLUSION

This paper presents a method to dehaze an image based on
the features which are automatically learned from massive hazy

images. To this end, a novel ranking layer is proposed to form
the Ranking-CNN, that can learn haze-relevant features more
effectively compared with the classical CNN. Equipped with the
novel ranking layer, our Ranking-CNN can capture the structural
and statistical features simultaneously. Based on the learned fea-
tures, a regression model is further trained to predict haze den-
sity for effective haze removal. Experimental results show that
our Ranking-CNN features are effective. The proposed image
dehazing method, which is based on the features, also achieves
satisfactory results on synthetic and real world data. At the same
time, as we extract features for every pixel, the weakness of our
method is its efficiency, which should be further improved in the
future work, i.e., via adopting FCN framework [24] to reduce
redundant computations.
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