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Abstract—Semantic object segmentation (SOS) is a challenging task in computer vision that aims to detect and segment all pixels of

the objects within predefined semantic categories. In image-based SOS, many supervised models have been proposed and achieved

impressive performances due to the rapid advances of well-annotated training images and machine learning theories. However, in

video-based SOS it is often difficult to directly train a supervised model since most videos are weakly annotated by tags. To handle

such tagged videos, this paper proposes a novel approach that adopts a segmentation-by-detection framework. In this framework,

object detection and segment proposals are first generated using the models pre-trained on still images, which provide useful cues to

roughly localize the semantic objects. Based on these proposals, we propose an efficient algorithm to initialize object tracks by solving

a joint assignment problem. As such tracks provide rough spatiotemporal configurations of the semantic objects, a voting-based

refinement algorithm is further proposed to improve their spatiotemporal consistency. Extensive experiments demonstrate that the

proposed framework can robustly and effectively segment semantic objects in tagged videos, even when the image-based object

detectors provide inaccurate proposals. On various public benchmarks, the proposed approach obtains substantial improvements over

the state-of-the-arts.

Index Terms—Video segmentation, semantic object, detection-based segmentation, weakly supervised segmentation

Ç

1 INTRODUCTION

ALTHOUGH still a young area, semantic object segmenta-
tion (SOS) is among the most popular research topics

in the computer vision community. Briefly speaking, SOS
aims to jointly detect and segment all pixels of the
objects from predefined semantic categories with a uni-
fied framework. In this framework, the detection and seg-
mentation parts are strongly coupled and responsible for
roughly locating the semantic objects and aligning them
with the physical boundaries of images/videos, respec-
tively. With SOS, many subsequent visual understanding
tasks like action recognition [44] and scene modeling [12]
may benefit from the precisely segmented semantic
objects in images/videos.

In the past years, the booming of large-scale image data-
sets [17], [55] and machine learning theories [30] lead to a
rapid advance in image-based SOS. In existing image-based
SOS approaches, the detection part has been proven very

helpful for revealing the high-level structures of the seman-
tic objects and fully identifying their spatial extents. For
example, various sophisticated object representations (e.g.,
deep neural networks [23], [38], [39], and-or graph [40],
[67]) were learned from massive training images with man-
ually segmented semantic objects. These representations are
capable for roughly detecting the semantic objects with vari-
ous poses, camera viewpoints and scales even in complex
and cluttered background, which improves the perfor-
mance of image-based SOS significantly.

Despite the remarkable success of image-based SOS, the
same story, unfortunately, fails to repeat in video-based SOS.
Unlike images, it is much more difficult to manually segment
semantic objects in large-scale videos frame-by-frame. For
example, the widely-used video-based SOS dataset [6] con-
tains only 701 frames with pixel-level annotations. It is some-
what unclear whether the supervised SOS models directly
trained on small datasets can well generalize to real-world
scenarios. Moreover, some unsupervised works [15], [18],
[34], [48] advocated to segment the salient and dominant
objects in videos, while such foreground objects are not neces-
sarily from the predefined semantic categories.

As it is difficult to manually generate pixel-level annota-
tions in videos, some works [26], [42], [62] turned to the
tagged videos that are vastly available on the internet. They
adopted weakly supervised learning methods (e.g., multi-
instance learning [26], negative mining [62] and label trans-
fer [42]) to locate objects that appear frequently in videos
with the same tags but rarely in videos with other tags.
Usually, these models can capture the discriminative parts
of semantic objects. However, they often have difficulties
segmenting a semantic object as a whole since such
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segmentation-only frameworks may fail to fully capture the
spatial extent of an object. Moreover, these models require
multiple videos as the input, which make them incapable of
handling a single tagged video.

To segment semantic objects in a single tagged video, this
paper proposes a novel approach that adopts a segmentation-
by-detection framework. In this framework, we use the object
detectors pre-trained on still images to generate a set of detec-
tion proposals. Due to the probable motion blur, compression
effect, object occlusion and deformation in videos, such pro-
posals are often noisy and only roughly reveal the probable
locations of semantic objects (see Fig. 1). We propose an effi-
cient algorithm to initialize a number of object tracks from
such noisy proposals by solving a joint assignment problem.
These tracks provide coarse configurations of semantic
objects, which are fed into a voting-based algorithm for spa-
tiotemporally consistent segmentation. Extensive evaluations
on videos from Youtube-Objects [28], [62], SegTrack v2 [36]
and FBMS-59 [47] datasets show that the proposed approach
outperforms various state-of-the-art approaches.

The main contributions are summarized as follows:

1) We propose a novel segmentation-by-detection
framework for video-based SOS, which significantly
improves the performance of SOS on tagged videos.

2) We propose an efficient algorithm to initialize object
tracks from the noisy detection proposals by solving
a joint assignment problem.

3) We present a novel voting-based algorithm to refine
the initial object tracks, which can produce spatio-
temporally consistent object segmentations.

In the rest of this paper, we first conduct a brief review of
the previous studies on SOS in Section 2. In Section 3,we pres-
ent the technical details of the proposed segmentation-by-
detection framework. Experimental results are shown in
Section 4. At last, we concludewith a discussion in Section 5.

2 RELATED WORK

Existing video object segmentationmodels can be categorized
into supervised, unsupervised and weakly supervised
groups. In the following, we mainly review approaches from
these groups, and also some tightly correlated approaches
that adopt a segmentation-by-detection framework.

2.1 Supervised Approaches

Most supervised SOS approaches have two steps. In the first
step, each pixel is fed into a classifier that generates cate-
gory-specific confidence scores. Based on these scores, an

inference step is further taken to obtain final labels. While
the first step was usually implemented using off-the-shelf
classifiers (e.g., [58]), the second step receives more atten-
tion, especially with an interest on incorporating various
object-level and scene-level cues. For example, Taylor
et al. [63] explored occlusion cues in a convex framework to
jointly segment semantic objects and estimate their depths.
Floros et al. [20] and Kundu et al. [32] lifted semantic video
segmentation into 3D space to impose geometric consis-
tency. Liu et al. [41] proposed to jointly reason about pixel
labels and object tracks, and incorporated depth ordering in
an augmented CRF. Another direction is to accelerate the
inference speed on long videos, such as dynamic graph
reduction [10] and coarse-to-fine reasoning [27].

To sum up, supervised models for video-based SOS
mainly take efforts towards sophisticated and efficient infer-
ence techniques, which may be caused by the fact that there
lacks a large-scale and well-annotated dataset for video-
based SOS. Actually, insufficient training data is the main
obstacle that prevent the rapid development of video-based
SOS models. To address this problem, Xie et al. [70] pro-
posed to transfer the annotations in reconstructed 3D street
scenes to 2D image plane so that a large amount of accurate
pixel-level video annotations can be rapidly generated.
However, this strategy is limited to work with several types
of scenes and objects. Gathering pixel labels for videos in
more wild setting, currently, is still largely unsolved.

2.2 Unsupervised Approaches

Unsupervised approaches mainly focus on segmenting the
salient foreground objects in videos. For instance, a series of
approaches [15], [34], [45] proposed to localize the underly-
ing objects by objectness proposals [3], [8], which is widely
considered as a branch of visual saliency [37]. After extract-
ing large amounts of proposals from various frames, they
formulated object segmentation in video as selecting a sub-
set of proposals with coherent appearance and motion. This
objective was addressed with various graph theories (e.g.,
spectral clustering [34], maximum weighted clique [45] and
directed acyclic graph [15]). Beyond proposal extraction,
several works [18], [48] estimated coarse foreground maps
on sparse spatiotemporal locations through bottom-up cues
(e.g., image fixation [48] and motion boundary [18]), and
refine them with long-range propagation. Other solutions
include motion analysis [47], foreground/background
modeling [56], [71], [74], and low-rank region grouping [35].

Despite the remarkable success of unsupervised app-
roaches, a key limitation is that there still exists a large gap
between foreground objects and semantic objects. However,
for taggedvideos the foregroundobjects do have tight correla-
tions with the video tags, and such inherent correlation
deserves being further explored in video-based SOS.

2.3 Weakly Supervised Approaches

Nowadays, videos on the internet are widely accompanied
with tags, which often indicate the presence/absence of
semantic categories in the videos. To explore these taggedvid-
eos, recent studies [42], [59], [62] adopted various weakly
supervised learning methods for video-based SOS. The
pioneer work [26] adopted multi-instance learning to learn
object appearance models from video-level tags. Later,

Fig. 1. Detection proposals generated on two videos from the Youtube-
Objects dataset [51], by directly applying the DPM detector [19] pre-
trained on Pascal VOC dataset [17]. The detections provide rough,
noisy, but important cues for video object localization.



Tang et al. [62] proposed to rank the spatiotemporal segments
in tagged videos via their dissimilarities to massive segments
sampled in irrelevant videos. As the former works only focus
on foreground/background segmentation, Liu et al. [42] pro-
posed a multi-class approach that can handle videos with
multiple tags, in which category-aware feature distance was
learned so as to build nearest neighbor classifiers.

Video object co-segmentation [11], [13], [16], [21], [54],
[66] tightly correlates with weakly supervised SOS, with the
small difference that there are no background videos, i.e.,
the same object categories are assumed to appear in all vid-
eos. Thus, co-segmentation mainly relies on inter-video sim-
ilarities to segment the common objects. Following this idea,
prior works [12], [54] initialized foreground/background
segmentation independently for each video, then iteratively
refined them to improve the appearance and motion simi-
larity of the segmented regions in different videos. In more
recent studies [16], [21] proposed to extract many object pro-
posals and select the ones with coherent appearance and
motion in different videos. Beyond focusing on inference,
Wang et al. [66] proposed to use spatiotemporal auto-con-
text feature and multi-instance boosting to represent and
learn the object appearance. Chiu et al. [13] assumed that
the distribution of object classes in different videos follow a
known probabilistic prior, which enables their approach to
handle unknown number of object classes and objects.

Weakly supervised SOS is capable of handling tagged
videos but still have two main limitations. First, object parts
often match more consistently across different videos than
the whole objects, especially for categories with large intra-
class variance. In this case, it may be difficult to segment
semantic objects as awhole. Second,most weakly supervised
approaches require multiple videos as input to discover the
common information hidden behind tags, which restricts the
usage of suchmodels in real-world applications.

2.4 Segmentation-by-Detection Approaches

To address the limitations above, our idea is to borrow the
power of object detectors pre-trained on external images,
while not introducing labeling efforts in video domain. The
concept of segmentation-by-detection is not new, with
many such efforts taken for image-based SOS. For example,
[69], [72] proposed to derive shape priors in the detected
bounding boxes to guide segmentation through voting [69]
or layer ordering [72]. Without other cues, however, they
lack the ability to prune false positive detections. In con-
trary, several approaches [33], [64] combined the detections

with region-level or scene-level cues to generate coherent
results. Beyond treating detection and segmentation sepa-
rately, recent works [14], [25] unified them into a single
stage considering the consistency between detected and seg-
mented regions. These approaches are robust to outlier
detections, but rely on strongly annotated training images.

Object segmentation-by-detection is relatively new for
videos. However, it is promising as videos provide spatio-
temporal cues that can effectively eliminate outlier detec-
tions with minimal supervision. Our previous work [73]
makes an attempt towards this direction and obtains state-
of-the-art results on Youtube-Objects dataset [28], [51]. This
extended version improves it in terms of both performance
and speed, see Section 3.4 for detailed comparisons. More
recently, Seguin and Laptev et al. [57] proposed a detection-
based approach to segment multiple object instances in a
video. To achieve this, they assumed that reliable detections
are given, and demonstrated the effectiveness of their
approach on segmenting humans. In contrast, our approach
is designed to work with inaccurate detections and general
object categories in more wild setting.

3 VIDEO OBJECT SEGMENTATION VIA DETECTION

3.1 Detection/Segment Proposal Extraction

Given a video with T frames, the first stage of our approach
extracts detection and segment proposals for each frame, as
shown in Fig. 2. Taking the tth frame as example, this stage
works as follows:

Detection Proposals. We apply image-based object detec-
tors (e.g., [19], [22]) to generate a set of object detections Dþ

t .
For each detection proposal D 2 Dþ

t , its normalized detec-
tion response is represented with rðDÞ. Normalization is
straightforward when the video is tagged with a single cate-
gory. For multiple categories, one can apply Platt scaling [50]
to calibrate detectors of different categories so as to make
their outputs comparable.

It would be too ideal to assume that the target objects are
always hit by some detections in Dþ

t . To handle detection
missing, a “dummy” detection Df is appended, i.e.,
Dt ¼ Dþ

t [ fDfg. Df does not have specific spatial position
or detection response. As shown in the next section, it is just
introduced for algorithmic convenience.

Segment Proposals. We apply the MCG proposals [3] for
each frame. To incorporate motion cues, we compute the
point-wise maximum between the edge response maps of
the original image and optical flow gradients, and feed the

Fig. 2. The system framework of our approach. It consists of three major stages, including 1) proposal generation: generating a set of detection and
segment proposals for each frame; 2) track initialization: initializing object tracks from noisy proposals by solving a joint assignment problem; 3) track
refinement: refining the spatiotemporal consistency of object tracks by using shape priors and color cues.



combined map into the rest stages of [3]. After extracting
object proposals, we eliminate the ones that are either too
small (i.e., with less than 200 pixels) or too large (i.e., cover
more than 80 percent image area). After that, we retain the top
500 proposals ranked by [3] and discard the rest. We further
follow [15] to re-score these proposals considering both their
objectness and motion saliency. The top 300 proposals after
re-ranking are picked up, which form the final proposal set St.
For each segment, we compute the HSV colors and texture
features [46] at each pixel inside, accumulate and quantize
them into 96-bin and 64-bin histograms, respectively. We
denote the concatenated features as ffðSÞ, and the “objectness”
score given by theMCGalgorithm as oðSÞ.

For convenience, we give here the Intersection-over-
Union (IoU) score that measures the overlap between two
regions (detection or segment) R1 and R2, computed as

pðR1;R2Þ ¼ jR1\R2j
jR1[R2j. Here j � j denotes the number of pixels

in the input region, and operators \ and [ generate the
intersected and union regions of R1 and R2, respectively. If
at least one ofR1 andR2 equals Df, i.e., the missed underly-
ing ground-truth detection, we simply set pðR1;R2Þ ¼ 1.

3.2 Track Initialization

In the track initialization, we aim to link the proposals to one or
several object tracks that best cover the semantic objects. To
this end, an immediate way is to apply the tracking-by-detec-
tionmodels (e.g., [9], [49]) to link detections into tracks. How-
ever, since the detections of the same object are often missing
and changing locations/scales across different frames, this
strategy can only generate fragmented tracks in our prelimi-
nary study. To address this issue, we notice that segment pro-
posals often evolve more smoothly along time, which could
be helpful for robust tracking. Therefore, we propose to jointly
assign the detection and segment proposals to tracks instead
of treating them separately, which thus lead to more consis-
tent and complete tracks.

3.2.1 Joint Assignment Problem

Assuming that there areK object tracks in a video (the value
ofK is unknown), we define the following variables

A ¼ fakDjk 2 f1; 2; . . . ; Kg; t 2 f1; 2; . . . ; Tg;D 2 Dtg;
B ¼ fbkSjk 2 f1; 2; . . . ; Kg; t 2 f1; 2; . . . ; Tg;S 2 Stg;

(1)

where akD (bkS) equals to 1 if D (S) is assigned to the kth track
and 0 otherwise. To optimize A and B we propose to solve
the following minimization problem:

min
A;B;K

LðA;BÞ þ �tVtðA;BÞ þ �sVsðBÞ; s:t:;

1Þ 8t;D 2 Dt;S 2 St;
X
k

akD � 1;
X
k

bkS � 1;

2Þ 8k; t;
X
D2Dt

akD ¼
X
S2St

bkS � 1;

3Þ
X
t

X
D2Dt

akD ¼
X
t

X
S2St

bkS � 1; and 4Þ 8k; t0 < t < t1;

X
D2Dt0

akD

0
@

1
A 1�

X
D2Dt

akD

 ! X
D2Dt1

akD

0
@

1
A ¼ 0;

(2)

where L denotes the quality of selected proposals, Vt and
Vs penalize the temporal inconsistency and spatial conflict
of tracks, while their influences are controlled by �t and �s.
The four sets of constraints, from top to bottom, indicate
that 1) a proposal can be assigned to at most one track; 2) a
track can select at most one detection/segment proposal
from each frame; 3) tracks are non-empty and 4) consecutive
along time. To show that the last constraint implies consecu-
tiveness, note that

P
D2Dt

akD takes 1 if the kth track passes
the tth frame, and 0 otherwise. Thus, it is impossible for a
track to be consecutive if there exists t0 < t < t1 so that it
appears at t0th and t1th frame but breaks at the tth frame.

The proposal quality term L is defined as

LðA;BÞ ¼ �Pt;k

P
D2Dt

P
S2St �ðD;SÞakDbkS; where

�ðD;SÞ ¼ log rðDÞa1 oðSÞa2pðD;SÞa3
1�rðDÞa1 oðSÞa2pðD;SÞa3 ; if D 6¼ Df

0; otherwise;

(
(3)

which are designed with two considerations. First, the
selected proposals are expected to have high detection
objectness scores. Second, for each track, the selected seg-
ment and detection on a frame should be spatially close.
The positive weights a1, a2 and a3 are empirically set as
a1 ¼ a3 ¼ 0:25, and a2 ¼ 0:5. For dummy detection pro-
posal, we set the outcome of selecting it to zero as it should
not contribute to the overall objective.

The penalty Vt encourages smoothly selecting segment
proposals on adjacent frames, which is computed as

VtðA;BÞ ¼
X
t;k

X
S2St

X
S02Stþ1

x2ðffðSÞ; ffðS0ÞÞ
1þ pð�S;S0Þ

bkSb
k
S0 : (4)

The smoothness term hðS;S0Þ considers both appearance
and shape similarities. The former is calculated by the x2

distance between the features of S and S0. To measure
shape similarity, we warp a segment S to the next frame
through optical flows, then calculate the overlap between
S0 and the warped region �S, i.e., pð�S;S0Þ.

The penalty term Vs prevents different tracks from
selecting segments with large spatial overlaps:

VsðBÞ ¼ 1

2

X
t

X
k 6¼k0

X
S;S02St

bkSb
k0
S0pðS;S0Þ: (5)

The problem obtained by incorporating (3)�(5) into (2), is
combinatorial and higher-order, which is very challenging
to solve. As a result, we reformulate this problem as a spe-
cial form of min-cost flow [2], which can be solved
efficiently.

3.2.2 Reformulation as Quadratic Min-Cost flow

We re-express the objective functions and constraints of (2)
using the following two sets of variables1:

dxðD;SÞ ¼
X
k

akDb
k
S; dyðD;D0;S;S0Þ ¼

X
k

akDa
k
D0
bkSb

k
S0 : (6)

1. Due to space limit, we briefly describe the reformulation here
while leave the strict analysis in supplementary material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2017.2727049.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2727049
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2727049


Note that dx and dy are also binary given the first constraint
in (2). This substitution marginalizes out k, i.e., the index of
tracks. dxðD;SÞ ¼ 1 means that the proposal pair ðD;SÞ is
selected by a track. Similarly, dyðD;D0;S;S0Þ indicates the
status of jointly selecting the pairs ðD;SÞ and ðD0;S0Þ. In
other words, we can treat dx and dy as the activation varia-
bles of nodes and edges in a graph, in which a node is a pair
of a detection and segment proposal in the same frame, and
an edge links such pairs for adjacent frames.

Given this graph, the solution of track initialization can
be characterized from two aspects. First, there are K tracks
traversing from the virtual source node to sink node along
the nodes and edges defined above. Second, these tracks do
not conflict in selecting segment or detection proposals.
From the perspective of network flow theory [2], the first
requirement can be well modeled by the flow conservation
and flow requirement constraints of unit-capacity flows [49].
The second requirement can be reformulated as quadratic
constraints: dxðD;SÞdxðD0;S0Þ ¼ 0 if D ¼ D0 or S ¼ S0 and
written in compact form ðddxÞTMM0ddx ¼ 0, where an entry of
MM0 takes 1 if a quadratic constraint holds for a pair of nodes,
and 0 otherwise.

Let dd ¼ ddx; ddy
� �T

be a column vector concatenating the
new optimization variables. By substituting it into (2) and
rewriting the constraints, we have

min
dd2f0;1gjddj

1

2
ddT

PP0 00
00 00

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

PP

dd� ��
hh

� �
|ffl{zffl}

cc

dd;

s:t: dd 2 FðKÞ ^ ddT
MM0 00
00 00

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

MM

dd ¼ 0:

(7)

The column vectors �� and hh concatenate the costs defined
in (3) and (4), and the matrix PP0 collects the quadratic costs
in (5). FðKÞ denote the feasible region of flow conservation
and requirement constraints.

What distinguish this problem with standard min-cost
flows are the quadratic costs and constraints. In [9], an effec-
tive solution is proposed for quadratic flows with moderate
size. As the size of our problem is much larger, we propose
a novel algorithm to efficiently solve (7).

3.2.3 The Optimization Algorithm

The difficulties for optimizing (7) lie in two aspects: 1) how
to determine the number of tracks K and 2) how to obtain
the configuration of each track. To address the first problem
efficiently, our algorithm works in greedy manner. At first,
it establishes a single flow using existing min-cost flow
solver. In each of the remaining steps, it tries to establish
one more flow. It stops when the objective value starts to
increase.

The second problem is addressed in each step of increas-
ing the number of flows. Assume that K � 1 flows are
obtained, whose configuration variable is written as ddðK�1Þ.
To obtain ddðKÞ, we propose an algorithm that finds a local
minimum of (7) using ddðK�1Þ as initialization, which can
jointly optimize all the obtained flows.

To solve (7), we first relax it into continuous domain and
put the quadratic constraints into the objective function:

min
dd2½0;1�jddj

1

2
ddTðPPþ mMMÞdd� ccTdd; s:t: dd 2 FðKÞ: (8)

The relaxed problem is quadratic, which is still inefficient to
solve. Inspired by recent advances on finding maximum
independent set [68], we instead iteratively solve its first-
order approximations. Starting from ddðK�1Þ, this algorithm
visits a sequence of solutions. Given the current solution dd0,
it seeks for the next one around the first-order neighbor-
hood of dd0 through Taylor expansion:

min
dd2½0;1�jddj

ddT ðPPþ mMMÞdd0 � cc½ �; s:t:dd 2 FðKÞ: (9)

This approximation is a tractable linear sub-problem
w.r.t. dd. Moreover, since that the constraint matrix FðKÞ of
min-cost flows is totally unimodular [2], the sub-problem
actually leads to discrete solution although solved in contin-
uous domain. After solving (9), we check whether the
obtained solution edd decreases the value of (8). If it does, we
accept it as the new local minimum. Otherwise, a local mini-
mum must exist along the solution path linearly interpo-
lated by dd0 and edd given the smoothness of the objective
function. Line search is thus performed in this case, in
which the new solution is expressed as dd0 þ rðedd� dd0Þ;
r 2 ½0; 1�. It is shown in [68] that the optimal step length r	

is calculated in closed form

r	 ¼ min max
cc� ðPPþ mMMÞdd0ð ÞTðedd� dd0Þ

ðedd� dd0ÞTPPðedd� dd0Þ ; 0

 !
; 1

 !
: (10)

The interpolated solution is not necessarily binary, but can
be used to start the next iteration. In this way, the objective
is guaranteed to decrease monotonically. To stop the itera-
tions, we compute the objective values in (8) of the last two
solutions and check whether they are sufficiently close (i.e.,
their absolute difference is within 10�8). After convergence,
the last binary solution is taken as ddðKÞ. Note that the
obtained local minimum in this manner satisfies the relaxed
quadratic constraints as long as m is sufficiently large (see
proof in supplementary material, available online).

We summarize the whole process in Algorithm 1. Since
that the number of semantic objects in a video is usually
small, the algorithm typically terminates in less than 5 runs.

Algorithm 1. The Track Initialization Algorithm.

Input: Problem structure cc, PP andMM, and parameter m.
Output: The local optimum dd	 and the flow numberK	.
1: Initialize a flow by solving

ddð0Þ ¼ mindd � ccTdd; s.t. dd 2 f0; 1gjddj \ Fð1Þ.
2: LetK ¼ 0, d̂d ¼ ddð0Þ;
3: Do
4: LetK ¼ K þ 1;
5: Using ddðKÞ as initialization, Solve (8) to obtain ddðKþ1Þ.
6: While ddðKþ1Þ decreases the objective defined in (8)
7: return dd	 ¼ ddðKÞ,K	 ¼ K.

Implementation Details. Note that the size of the problem
is large since it operates on proposal pairs. To reduce the
size, we only consider the nodes where the IoU overlap
between the segment and detection bounding boxes exceeds



30 percent. Temporal edges whose segments have less than
30 percent area overlapped after optical flow mapping are
also pruned. In this manner, the number of optimization
variables can be restricted into several millions even for
long videos with hundreds of frames. Such a scale is tracta-
ble for commercial solvers such as Gurobi [24]. After solv-
ing (7), the tracks that span less than 3 frames are
considered unreliable and removed. The remaining tracks
may still cover a small portion of the video, thus we extend
them temporally through tracking segment proposals. We
apply the efficient greedy tracking algorithm [16], and stop
it when no region in the successive frame has more than 50
percent area mapped to the last tracked segment. We per-
form tracking independently for each track, in both forward
and backward directions.

3.3 Track Refinement

Although the initial tracks can locate the objects well, they
often exhibit inconsistent appearance in different frames. It
is due to the limitation that segment proposal extraction is
performed individually for each frame, thus is sensitive to
various levels of occlusion, background clutter and motion
blur on different frames. To address this problem, we pro-
pose a novel voting-based algorithm to improve the spatio-
temporal consistency of the initial segmentations.

The algorithm starts from the observation that the rank-
ing scores given by segment proposal extractors are often
designed to match the spatial overlaps with the underlying
ground-truth object [3], [8]. Thus, these scores are natural
estimators of object shapes. To implement this idea, one can
simply aggregate these scores onto pixels. To this end, we
first retain the segment proposals with more than 50 percent
area overlapped by the initial segment in each frame. Let the
ith segment on the tth frame be denoted with St;i. The likeli-
hood of the ith pixel (superpixel) on the tth frame being
part of the object, denoted with CtðPi

tÞ, is calculated as

CtðPi
tÞ ¼

X
j

1ðPj
t 2 Sj

tÞoðSj
tÞ; (11)

where 1ð�Þ is the characteristic function which takes 1 if the
condition holds, or 0 otherwise. A similar formula was
introduced in [69] without considering the objectness
scores, and obtained promising performance on the Pascal

VOC dataset. Representative object shape priors estimated
by 11 are illustrated in the top row of Fig. 3. However, in
case of severe occlusion or background clutter as shown by
the 2nd and 3rd rows in Fig. 3, the estimations are often
unreliable since the background distractors and “occluder”
objects are often more salient than the foreground objects.
To address this issue, notice that the foreground regions
often appear more consistently than the background ones
when looking across the whole spatiotemporal region
defined by the initial track. To instantiate this idea, we allow
a segment proposal to give votes to pixels temporally far
away from it. Such extension modifies (11) by

CðPi
tÞ ¼

X
t0

X
j

1 Pi
t 2 T t0;tðSj

t0
Þ

� �
oðSj

tÞ; (12)

in which a warping function T t0;t is introduced to propa-
gate the segment proposals on the t0th frame to tth frame.
Note that the voting process in (12) can be performed by
first computing the per-frame estimates using (11), and then
propagating them to every other frame through optical
flows. The final estimates for each frame are computed as
the summation of the propagated confidence maps from all
other frames and its own, and normalized.

To speed up and compensate boundary information, we
operate on SLIC superpixels [1]. The propagation from the
t0th to the tth frame (t > t0) is recursive, computed by

Ct0;tðPi
tÞ ¼

P
j vðPj

t�1;Pi
tÞFt0;t�1ðPj

t�1ÞCt0;t�1ðPj
t�1ÞP

j vðPj
t�1;Pi

tÞFt0;t�1ðPj
t�1Þ

: (13)

In (13), Ct0;tðPi
tÞ denotes the propagated confidence from

the t0th frame onto superpixel Pi
t on the tth frame. The

connection weight vðPj
t�1;Pi

tÞ is the number of pixels in
Pj

t�1 mapped to Pj
t through optical flows. To quantify the

transfer error of optical flows, we introduce a re-weight-
ing term Ft0;tðPi

tÞ for each superpixel, measuring the
quality of propagated confidences from the t0th frame to
Pi

t. Large value of F indicates high confidence and should
contribute more to the propagation to the next frame. We
follow [65] and interpret Ft0;tðPi

tÞ as the percentage of
pixels in Pi

t correctly tracked during the propagation. In
this manner, the computation of F has the following
recursive structure:

Fig. 3. Visual comparison between the per-frame voting and spatiotemporal voting. Row 1: trivial cases with clean background, where high-quality
estimations are obtained by both voting schemes. Row 2 � 3: when background clutter and object occlusion present, only the spatiotemporal voting
gives meaningful results. Row 4: spatiotemporal voting fixes per-frame failures and generates more complete shape priors.



1�Ft0;tðPi
tÞ ¼

X
j

vðPj
t�1;Pi

tÞ
jPi

tj
ð1�Ft0;t�1Þ

þ
X
j

vðPj
t�1;Pi

tÞ
jPi

tj
Ft0;t�1ðPj

t�1ÞCðPj
t�1Þ:

(14)

The right hand of (14) quantifies the percentage of pixels in
Pi

t that are mis-tracked during propagation, and is derived
from two parts. The first part counts the pixels that already
lose identities in the previous steps, which will certainly
introduce errors when doing propagation to Pi

t. The second
part accounts for the other pixels correctly tracked during
all the time from the t0th to the ðt� 1Þth frame, but wrongly
propagated in the last hop. We quantify the percentage of
mis-tracked pixels in a single hop as CðPj

t�1Þ ¼ exp
ð� 1

�g
krffðPj

t�1ÞkÞ where ffðPj
t�1Þ is the mean magnitude of

the flow gradients, a quantity often used to measure the reli-
ability of optical flow tracking [48], [65]. It is efficient to
compute although it does not directly imply the definition
ofC, i.e., the number of correctly tracked pixels. More intui-
tive definitions (e.g., the count of consistent pixels through
forward-backward check [59]) could be used for more prin-
cipled definition.

Given the recursive structures of (13) and (14), the propa-
gation is efficient with two-pass dynamic programming:
one pass for the weights F and one pass for the confidence
scores. Compared with the per-frame voting scheme (11), it
suppresses background confidence effectively and produces
complete object shapes, see Fig. 3 for visual comparisons.

GrabCut Labeling. As this paper focuses on class-level
object segmentation, the initial tracks and the inferred shape
priors from the same category are merged together before
further processing. They are then integrated into the classic
GrabCut framework [53] to generate final results: the unary
cost linearly combines the color likelihoods and shape prior
maps, while the definition of the pairwise term follows [48],
which models color contrasts among spatiotemporally adja-
cent superpixels. The initial color models are learned on the
(merged) masks for each label. Learning the color models
and optimizing the labels are repeated until convergence.
As the energy is submodular, label optimization can be
done efficiently with the alpha-beta move algorithm [5].

3.4 Comparison with Previous Work

This work is an extension of our previous work [73], while
the main difference lies in three aspects:

First, a new algorithm is proposed for track initialization.
The algorithm benefits from the special problem structure
and powerful optimization techniques, and is thus efficient.
In contrast, our previous algorithm forms multiple candi-
date tracks and then selects a subset of tracks from these
candidates by solving a quadratic binary problem.
Although this strategy also obtains promising results, it is
somewhat heuristic and less efficient in practice.

Second, we propose a novel algorithm for shape prior
estimation. In our algorithm, each pixel location aggregates
votes from a wide coverage of segment proposals in the
video, which generate complete and consistent shape priors.
In contrary, our previous work votes for each pixel using
many segment tracks that are expected to cover the objects

or object parts. This strategy suppresses background well,
but may wrongly suppress deformable object parts that are
not tracked easily, leading to incomplete shape priors.

Finally, in this work we conduct extensive evaluations on
large numbers of videos from Youtube-Objects [28], [62],
SegTrack v2 [36] and FBMS-59 datasets [47] and various
semantic categories. Results on various datasets demon-
strate the effectiveness of the proposed approach and show
improved performance over our previous work in both
accuracy and speed.

4 EXPERIMENTS

4.1 Experimental Settings

We use videos from Youtube-Objects dataset [51] for evalu-
ation as it shares 10 Pascal VOC [17] object categories where
off-the-shelf detectors are available. On this dataset, pixel-
level groundtruths are avaliable for two subsets collected
by Jain and Grauman [28] and Tang et al. [62], which are
referred as YTO-Jain and YTO-Tang, respectively. YTO-Jain
dataset consists of 126 videos, which are accurately labeled
every 10 frames. In contrary, YTO-Tang dataset is com-
prised of 151 videos but objects are roughly and densely
labeled on supervoxel level. Each of them is among the larg-
est video segmentation benchmarks, with more than 20,000
frames in total and up to 400 frames per video. We also use
a subset of the YTO-Jain dataset only consisting of the anno-
tated frames, denoted with YTO-Jain-Sub. On this smaller
dataset, we extensively evaluate the proposed approach to
see its performance under various conditions.

We make comparisons with 8 existing approaches of
three types with available results/codes:

1) The unsupervised group LTV [47], FST [48], ACO [29]
andNLC [18]. These approaches segment one or more
object instance(s) in unconstrained videos based on
motion and saliency analysis, and are proven to show
good results in various real-world settings.

2) The weakly supervised approaches CRANE [62] and
MWS [42]. They simultaneously segment the com-
mon objects in a set of videos labeled with the same
category(s) via weakly supervised learning, and are
among the state-of-the-arts on YTO-Tang dataset.

3) The supervised group DTM [4] and FCN [43]. DTM is a
recently proposed detection-based approach relying
on the R-CNN detector [23], while FCN is the state-
of-the-art semantic segmentation model trained on
massive manual segmentations. DTM is directly
comparable as it also only requires bounding box
detectors.

We evaluate 2 variants of the proposed approach: OSD-
DPM, OSD-FRCNN which are equipped with the DPM [19]
and the state-of-the-art Fast R-CNN [22] detectors, respec-
tively. Our previous work OSD-P-DPM [73] employs DPM
detectors. These detectors are pre-trained on Pascal VOC
dataset without being re-trained or fine-tuned with addi-
tional data. The free parameters �1 and �2 in (2) are set to 10
and 1,000, respectively. As for the metric, we follow previ-
ous works and use the Intersection-over-Union overlap
ratio (IoU) to evaluate each video, which is computed as

TP
TPþFP where TP (FP ) is the number of true (false) positive
foreground pixel labels. On YTO-Tang dataset, mean



Average Precision (mAP) is adopted by treating segmenta-
tion as a pixel-level classification problem (computed on the
produced soft segmentations before graph-cut smoothing),
to make direct comparisons with [62] and [42].

4.2 Comparison with State-of-the-Arts

4.2.1 Comparison with Existing Approaches

Results on YTO-Jain dataset are shown in Table 1. Although
equipped with weaker detectors, OSD-DPM performs simi-
larly with the recent detection-based approach DTM. When
using the same RCNN detector, OSD-FRCNN achieves sig-
nificantly improved results. We suspect that jointly selecting
detection and segment proposals obtains more robust initial
tracks than solely linking the inconsistent detections. OSD-
DPM performs consistently better than our previous work
OSD-P-DPM on almost all the categories. The strong FCN
model does not generalize well to the Youtube-Objects data-
set, which may owe to the domain transfer from image to
video, as models trained on clean high-quality images often
perform poorly on low-quality web videos [52], [61]. FST
and ACO perform favorably on object categories with
salient motion, e.g., cat, dog and horse. However, due to the
lack of high-level knowledge, they may fail to detecting sev-
eral objects without sufficiently salient motion, leading to
worse performance on train, cow and boat.

Table 2 summarizes the results of the proposed approach
and several state-of-the-art unsupervised approaches on the
YTO-Jain-Sub dataset. Since YTO-Jain-Sub exhibits signifi-
cantly faster camera/object move but less visual informa-
tion than YTO-Jain, unsupervised approaches have
difficulties in correctly detecting the target objects. In con-
trary, the proposed approach only encounters slight degen-
eration thanks to the aid of detection cues. As a result, the
proposed approach obtains more than 30 percent improve-
ments over other models, with substantial gains on almost
all the categories.

In Fig. 4, OSD-DPM and OSD-FRCNN outperforms the
weakly supervised approaches on the YTO-Tang dataset by a
large margin. As groundtruth objects on this dataset are
weakly annotated at supervoxel-level, the results may bias
towards the weakly supervised approaches which also oper-
ate on supervoxels. Thus, further improvements can be
expected if accurate annotations become available. However,
the precision-recall curves in Fig. 4 suggest that the maximal
precisions of OSD-DPM and OSD-FRCNN still fall in 60 � 80
percent, meaning that more than 20 percent semantic objects
are missed. These statistics imply a large space to improve for
both object detection and segmentation in videos.

Note that in all the evaluations, OSD-FRCNN improves
over OSD-DPM significantly. It is predictable, as the Fast
RCNN detector improves the detection mAP significantly
over DPM (67.8 versus 43.6 percent, evaluated on the YTO-
Jain dataset). Large improvements are observed on aero-
plane, bird, cat and train, where several videos failed by
DPM are succesfully handled via Fast RCNN. Interestingly,
on many categories (e.g., car, cow and motorbike) OSD-DPM
performs comparably with OSD-FRCNN. We observe that
the final segmentations are reasonable in many cases even if
the detections are far from satisfactory. In Fig. 5, we show

TABLE 1
Quantitative Results on YTO-Jain Dataset, Reported as IoU

Method Plane Bird Boat Car Cat Cow Dog Horse Mbike Train Cls. Avg. Vid. Avg.

LTV 0.137 0.122 0.108 0.237 0.186 0.163 0.180 0.115 0.106 0.196 0.155 0.156
FST 0.709 0.706 0.425 0.652 0.521 0.445 0.653 0.535 0.442 0.296 0.538 0.539
ACO 0.630 0.690 0.400 0.610 0.480 0.460 0.670 0.530 0.470 0.380 0.530 0.534
FCN 0.593 0.676 0.326 0.505 0.331 0.274 0.356 0.460 0.184 0.473 0.418 0.373
DTM 0.744 0.721 0.585 0.600 0.457 0.612 0.552 0.566 0.421 0.367 0.562 0.558
OSD-P-DPM 0.680 0.671 0.488 0.709 0.388 0.567 0.493 0.514 0.420 0.517 0.545 0.518
OSD-DPM 0.698 0.677 0.515 0.695 0.408 0.599 0.614 0.512 0.435 0.525 0.568 0.557
OSD-FRCNN 0.899 0.750 0.568 0.693 0.555 0.553 0.636 0.458 0.430 0.631 0.617 0.591

Along each column, bold highlights the top place while underline the second.

TABLE 2
Quantitative Results on YTO-Jain-Sub Dataset, Reported as IoU

Method Plane Bird Boat Car Cat Cow Dog Horse Mbike Train Cls. Avg. Vid. Avg.

FST 0.431 0.641 0.315 0.393 0.325 0.337 0.390 0.325 0.195 0.341 0.369 0.355
ACO 0.575 0.607 0.374 0.311 0.360 0.312 0.458 0.407 0.217 0.342 0.396 0.389
NLC 0.549 0.598 0.269 0.436 0.297 0.336 0.421 0.351 0.270 0.450 0.398 0.371
OSD-P-DPM 0.718 0.666 0.443 0.668 0.391 0.553 0.492 0.470 0.430 0.469 0.530 0.504
OSD-DPM 0.671 0.679 0.457 0.623 0.389 0.590 0.544 0.472 0.434 0.485 0.534 0.519
OSD-FRCNN 0.616 0.680 0.553 0.637 0.527 0.619 0.614 0.489 0.412 0.511 0.566 0.568

Along each column, bold highlights the top place while underline the second.

Fig. 4. Quantitative results on YTO-Tang dataset, reported as mAP (left)
and precision-recall curves (right).



representative results generated by the proposed approach.
Note that it can successfully segment the objects although
the detections vary significantly in locations and scales.

In the last row of Fig. 5, we show several typical failure
cases of the proposed approach. In the left, the aeroplane
only occupies a small portion of its detection box. Without
prior object knowledge, the track initialization stage tends
to select the segment proposals that can fill the detection
boxes, which may include large background area and con-
fuse the refinement stage. The middle example shows that
the proposed approach may fail if the detectors cannot
hit the target object (e.g., the extremely small cow present in
the video). In the right example, false positive detections
appear consistently in the video and are considered reliable,
which incurs large segmentation errors. These cases could
be handled by incorporating category-specific object shape
priors [72] and stronger detectors.

4.2.2 Comparison with the Previous Work [73]

The IoU of the proposed approach OSD-DPM is 2.3 and 1.5
percent higher than our previous work OSD-P-DPM on
YTO-Jain and YTO-Jain-Sub datasets, respectively. Major
improvements are observed on non-rigid categories (i.e.,
cat, cow, dog). To understand the rationale behind the
improvements, two additional experiments are conducted
on the YTO-Jain-Sub dataset, as summarized in Table 3 and

Fig. 6, respectively. For ease of presentation, we refer to the
track initialization and refinement algorithms proposed in
this paper as TI and TR, while those proposed in the previ-
ous work [73] as TI-P and TR-P, respectively.

In Table 3, we show the final results when applying TI and
TI-P for track initialization, respectively. For both scenarios,
we adopt TR for track refinement. Similar accuracies are
obtained by TI nad TI-P with different detectors, while TI
costs only less than half the time taken by TI-P. We find that
although both algorithms are efficient in many cases, TI-P is
sometimes significantly slower on several long videos with
multiple objects. We also note that the Fast RCNN detections
are slightly faster to be processed than the DPM detections.
We suspect that the stronger Fast-RCNN detector distin-
guishes from the foreground and background regions better
andmake the initialization process less confusing.

Table 3 also shows that the performance of OSD-P-DPM
is improved if TR-P is replaced with TR. To better under-
stand the contributions of TR, we compute the precisions
and recalls of the shape priors generated by different refine-
ment algorithms as well as their time cost in Fig. 6. A

Fig. 5. Representative examples generated by our approach on Youtube-Objects dataset. Rows 1-4: successful cases. We show our results in case
of high-quality detections (left), highly inconsistent detections (middle) and multiple objects (right). Row 5: partially successful examples. Our
approach may miss some object parts when the detections are unreliable (left), fail to locate the objects in some frames in presence of large camera
motion (middle) and fail to segment the undetected objects (right). Row 6: typical failure cases, including invalid bounding box assumption (left), miss-
ing detections (middle) and false positives (right). See text for details.

TABLE 3
Evaluating Track Initialization Algorithms

on the YTO-Jain-Sub Dataset

Algorithm Detector IoU Secs/frame

TI-P
DPM 0.519 1.64

Fast RCNN 0.563 1.58

TI
DPM 0.519 0.76

Fast RCNN 0.566 0.62
Fig. 6. Evaluating shape prior estimation algorithms on the YTO-Jain-
Sub dataset as precision-recall curves. The legend shows the Average
Precision (AP) and time cost of different algorithms.



baseline TR-B is also involved that excludes the error re-
weighting term in (13). Fig. 6 shows that TR improves the
Average Precision (AP) over TR-P while being a magnitude
faster. Such improvement lies in that the novel voting
scheme can generate more complete object shape priors by
aggregating the information of all the proposals, while TR-P
may ignore the proposals that are not consistently tracked
and thus miss some object parts. TR also outperforms TR-B
with negligible time burden, suggesting that handling long-
range propagation errors is desirable for optical flow based
estimation of shape priors.

4.3 Performance Analysis

In this section, we conduct additional experiments to see
how the proposed approach works and further demonstrate
its effectiveness. To comprehensively analyze different
aspects of the proposed approach, the following evaluations
are taken on the smaller YTO-Jain-Sub dataset. If not explic-
itly explained, OSD-DPM is used as the baseline approach.

4.3.1 Detection Cues versus Bottom-Up Cues

In the first experiment, we aim to understand how much the
detection cues improve over the conventional bottom-up cues
(e.g., motion and saliency) towards high-quality video object
segmentation. To this end, we report the object segmentation
and localization performance of the proposed approach and
two state-of-the-art unsupervised approaches FST and NLC
on the videos correctly handled by all the competitors. A
video is considered to be correctly handled by an approach if
its IoU score on this video is above a given threshold. In Fig. 7,
such threshold is chosen uniformly from 0 to 1 and the seg-
mentation and localization performances are reported accord-
ingly. Segmentation accuracy is reported as IoU scores, while
the localization task follows the CorLoc metric [60], i.e., per-
centage of the correctly localized objects under Pascal VOC
object detection criterion [17]. Note again that at each

threshold, the numbers are averaged on the videos correctly
handled by all the approaches.

It is observed from Fig. 7 that the proposed OSD-DPM
and OSD-FRCNN follow closely, while both achieve much
higher segmentation and localization accuracies than the
unsupervised approaches relying on bottom-up cues. This
fact suggests that 1) the spatial extents of the video objects
can be retrieved more accurately with top-down detection
cues, while bottom-up cues only may lead to over(or
under)-estimation by missing object parts or including addi-
tional background. 2) The right of Fig. 7 also shows that
incorporating detection cues help detect more video objects
that might be missed by bottom-up approaches.

4.3.2 Ablation Studies of Different Components

In the second experiment, we propose to see the contribu-
tions of the track initialization and track refinement compo-
nents. Two baselines are implemented: Base-INT takes the
initial tracks as final segmentation, in which the refinement
process is excluded. Base-GC uses the bounding boxes of the
initial segments to bootstrap the GrabCut [53] process,
which is used to isolate the proposed shape priors.

The performances on the subset of [28] are summarized in
Table 4. Note that the initial tracks selected by OSD-INT
already obtains higher accuracy than the unsupervised
approaches FST and NLC (see Table 2). The OSD-DPM
improves over OSD-GC by 3.2 percent, demonstrating the
effectiveness of the proposed shape priors than a simple
bounding-box prior. OSD-GC even harms the results on Boat
and Train, which attributes to the highly inconsistent detec-
tion boxes generated on these categories. On the contrary, the
proposed shape priors improve the performance on all the
categories.

4.3.3 Sensitiveness to Detection Thresholds

In the third experiment, we evaluate the sensitiveness of our
approach w.r.t. different detection thresholds. We vary the
thresholds uniformly from ½0; 1� and study both the IoU seg-
mentation accuracies and detection F1-scores, which are
summarized in Fig. 8. The detection F1-score is calculated
as 2�P �R

PþR , where P and R are detection precisions and recalls
computed following the Pascal object detection Criteria [17].

Fig. 8 shows that the segmentation accuracy only slightly
changes while the detection curve has large variance. Nota-
bly is that the segmentation performance is only 0.9 percent
worse when all the detections are fed into our algorithm
(i.e., the threshold is zero). It shows the robustness of the
track initialization process, and is desired in practice since
choosing a proper detection threshold is usually not trivial.

In Table 1, the performance of OSD-DPM (IoU = 51.9 per-
cent) is computed using the optimal threshold estimated from

Fig. 7. Left: IoU scores (left) and object CorLoc accuracies of different
approaches as functions of the overlap threshold on the YTO-Jain-Sub
dataset. (Best viewed in color.)

TABLE 4
Results of Ablation Studies on the YTO-Jain-Sub Dataset, Reported as IoU

Method Plane Bird Boat Car Cat Cow Dog Horse Mbike Train Cls. Avg. Vid. Avg.

OSD-INT 0.457 0.570 0.407 0.601 0.306 0.450 0.408 0.357 0.344 0.437 0.434 0.413
OSD-GC 0.696 0.648 0.413 0.563 0.336 0.544 0.546 0.428 0.406 0.424 0.500 0.487
OSD-DPM 0.671 0.679 0.457 0.623 0.389 0.590 0.544 0.472 0.434 0.485 0.534 0.519

Bold highlights the top place while underline the second.



the detection F1-scores (see the vertical dashed lines in Fig. 8).
Interestingly, Fig. 8 shows that the optimal thresholds do not
actually lead to the best segmentation performance. In fact,
the accuracy of OSD-DPM reaches 54.1 percent when the
thresholds of all categories are set to 0.6, which is even close to
OSD-FRCNN, which reaches 56.9 percent. It partly owes to a
limitation of detection-based approaches: if some false posi-
tive detections are not successfully suppressed, they may
establish wrong segment tracks and thus incur large segmen-
tation errors. As a result, the performance tends to improve
when larger threshold (thus less false positives) is used. Also
note that the cow category is an exception as it achieves best
accuracywhen the threshold is zero. In this category,multiple
object instances are present in many videos, thus a smaller
detection threshold is able to improve the recall and lead to
higher segmentation accuracy.

4.3.4 Impact of Spatial and Temporal Terms

The fourth experiment aims to see the impact of the terms (4)
and (5), which stands for the degree of tracking consistency
and spatial exclusion of the selected tracks, respectively. To
this end, we sample �1 and �2 of (2) uniformly in log scale,
and compute the mean IoU scores at each parameter combi-
nation. The score distributions shown in Fig. 9 suggest that
non-zero assignment of �1 and �2 increases the results, and
the performance is stable for a wide range of parameters,
i.e., 1 � �1 � 100 and �2 > 0. Small �1 ignores tracking con-
sistency, while large value tends to break the tracking at

weak links and produce fragmented tracks. Incorporating
the spatial exclusion term has a positive effect in most cases,
since it helps remove false positive tracks and distinguish
between interacting objects. Fig. 10 illustrates the impacts of
different terms on a sample video frame. Without enforcing
temporal consistency, incorrect initial object segments are
selected due to detection failures. If spatial mutual exclu-
sion is not considered, many false positive tracks with high
detection scores are established and the interacting objects
are merged together. Both cases would lead to unexpected
final results. The joint model, on the contrary, localizes the
objects more accurately.

4.3.5 Multi-Class/Object Video Segmentation

Although the results are primarily shown on single-class
video segmentation, the proposed approach naturally han-
dles multiple classes/objects (to handle multiple object
instances, one can assign a unique label for each initial track
before GrabCut). To evaluate this setting on wild categories,
we collect 9 additional videos from public benchmarks: 3 are
collected from the SegTrack v2 [36] dataset (bmx, drift and
hummingbird) while the others are from the FBMS-59 [47] data-
set (cars5, cars10, cats07, horses01, horses04 and people04). These
videos are chosen to be comprised ofmultiple object instances
from at least one Pascal VOC category, and exhibit varying
time durations from 30 to 800 frames. We reuse their original
annotations and re-annotate several of them so that ground-
truthmasks are available for each object instance.

In Table 5, the proposed approach OSD-FRCNN is com-
pared with several existing multi-label segmentation
approaches LTV, DTM, FCN and the MCM [31]. Following
previous works [4], [36], for each annotated object we report
the IoU of the best object track produced by each algorithm.
Results show that LTV and MCM perform well on video
objects with distinct and rigid video motion (e.g., cars5,
cars10), but fail to separating objects with strong interactions
(e.g., horses01, horses04). FCN does not recognize different
objects from the same class, thus perform worse on videos
such as cars5 and drift. Our approach performs better or
comparably in these cases. Fig. 11 shows some qualitative
results generated by the proposed approach. Although rea-
sonable results are achieved in various cases, the proposed
approach still has difficulty segmenting heavily overlap-
ping objects (e.g., the birds in cats07). Without stronger
instance-specific cues, it is still challenging to accurately
segment videos with such strong instance occlusions.

Fig. 8. IoU scores (left) and detection F1-scores (right) of the proposed
approach as functions of detection thresholds on the YTO-Jain-Sub
dataset. The optimal threshold for each category (where F1-score is
maximized) is indicated using vertical dashed lines. For clarity, we illus-
trate four dominant categories with the most instances and the curves
averaged on all classes. (Best viewed in color.)

Fig. 9. Average IoU scores of the proposed approach as a function of
value combinations of �1 and �2 on the YTO-Jain-Sub dataset. The
cross of two slices shows the best accuracy. (Best viewed in color.)

Fig. 10. The initial (top) and the final (bottom) object tracks generated by
incorporating one and both of the spatial and temporal terms in Eq. (2),
evaluated on the video horses01 from the FBMS-59 dataset. Colors rep-
resent different objects. (Best viewed in color with zoom.)



4.3.6 Running Time

In Table 6, we summarize the average time cost of differ-
ent stages of our approach on the YTO-Jain-Sub dataset.
The evaluation is based on an unoptimized single-thread
MATLAB implementation run on a 3.4 GHz processor.
On this dataset, most video shots have resolution
640
 360.

The time bottlenecks of our approach lie in the stages of
pre-processing and graph-construction. In the current imple-
mentation, we use [7], [19] and [3] to compute the optical
flows, detections and segment proposals, respectively. For
acceleration, the pre-processing stage can integrate state-of-
the-art fast implementations (e.g., [22], [59], [75]), while
graph construction is highly parallelizable. Other stages are
relatively efficient. Empirical comparisons suggest that the
proposed approach is faster than state-of-the-art proposal-
based approaches (e.g., [15], [34]). However, it is still slower
than several unsupervised approaches [18], [48]. Exploring
more efficient ways to incorporate image-based detections
would be interesting for future research on semantic object
segmentation in videos.

5 CONCLUSION AND DISCUSSION

This paper proposes a segmentation-by-detection approach
for semantic object segmentation in tagged video. It starts
with generating per-frame detection and segment proposals
on various frames. After that, object tracks are initialized
efficiently through solving a joint assignment problem,
which is shown to be robust to the detection noise. The ini-
tial tracks are finally refined with a voting-based algorithm
that can generate spatiotemporally consistent shape priors.
From extensive experiments, we demonstrate that image-
based object detections can significantly boost the segmen-
tation performance in tagged videos while not introducing
additional supervisions.

Our results reveal that the full spatial extents of semantic
objects are not trivial to capture with only bottom-up mod-
els. We believe that exploring top-down cues provided by
pre-trained image-based models could be effective for han-
dling weakly labeled videos. In the future, we will extend
this idea for object segmentation in multiple weakly labeled
videos, exploring the inter-video similarities to jointly refine
per-video detections/segmentations. Another interesting
direction is to combine object occlusion cues and detection
cues for robust instance-level video object segmentation.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
help in improving this work. This work was supported
in part by grants from the National Natural Science

TABLE 5
Quantitative Results on Multi-Class/Object Segmentation on

Videos from the FBMS-59 and SegTrack v2
Datasets, Reported as IoU

Video-Object LTV MCM DTM FCN OSD

bmx-person 0.048 0.704 0.907 0.009 0.826
bmx-bicycle 0.012 0.173 0.335 0.200 0.297
drift-car#1 0.351 0.502 0.701 0.360 0.813
drift-car#2 0.124 0.003 0.602 0.369 0.679
hummingbird-bird#1 0.039 0.110 0.104 0.398 0.652
hummingbird-bird#2 0.554 0.324 0.094 0.302 0.556
cars5-car#1 0.026 0.010 - 0.003 0.150
cars5-car#2 0.921 0.920 - 0.151 0.855
cars5-car#3 0.760 0.788 - 0.229 0.758
cars10-bus 0.637 0.742 - 0.785 0.747
cars10-car 0.802 0.803 - 0.750 0.789
cats07-bird#1 0.014 0.561 - 0.315 0.492
cats07-bird#2 0.028 0.007 - 0.230 0.318
cats07-cat 0.019 0.761 - 0.119 0.746
horses01-person 0.272 0.233 - 0.452 0.463
horses01-horse 0.554 0.475 - 0.714 0.569
horses04-person 0.099 0.260 - 0.509 0.497
horses04-horse#1 0.645 0.506 - 0.667 0.687
horses04-horse#2 0.105 0.115 - 0.040 0.280
people04-person#1 0.021 0.567 - 0.399 0.164
people04-person#2 0.311 0.283 - 0.221 0.212
people04-motorbike 0.490 0.527 - 0.582 0.618
Average on videos 0.316 0.423 - 0.369 0.569
Average on objects 0.311 0.426 - 0.355 0.553

Bold highlights the top place while underline the second.

Fig. 11. Representative results generated by the proposed approach on
segmenting multiple classes/objects. Colors represent different object
instances. Best viewed in color with zoom.

TABLE 6
Average Running Time of Our Approach on the Subset of [28]

Stage Secs/frame

Pre-processing 63.11
Track init. (graph construction) 26.14
Track init. (optimization) 0.76
Track refine. (shape prior estimation) 0.51
Track refine. (grab-cut optimization) 1.57



Foundation of China (61325011, 61532003 and 61421003).
Earlier version of this work has been published in CVPR
2015 [73].
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