
Deep3DSaliency: Deep Stereoscopic Video Saliency
Detection Model by 3D Convolutional Networks

Yuming Fang , Senior Member, IEEE, Guanqun Ding , Jia Li , Senior Member, IEEE,

and Zhijun Fang , Senior Member, IEEE

Abstract— Stereoscopic saliency detection plays an important
role in various stereoscopic video processing applications. How-
ever, conventional stereoscopic video saliency detection methods
mainly use independent low-level features instead of extracting
them automatically, and thus, they ignore the intrinsic relation-
ship between the spatial and temporal information. In this paper,
we propose a novel stereoscopic video saliency detection method
based on 3D convolutional neural networks, namely, deep 3D
video saliency (Deep3DSaliency). The proposed network consists
of two sub-models: spatiotemporal saliency model (STSM) and
stereoscopic saliency aware model (SSAM). STSM directly takes
three consecutive video frames as the input to extract visual
spatiotemporal features, while SSAM attempts to further infer
the depth and semantic features from the left and right video
frames by shared parameters from STSM. The visual spatiotem-
poral features from STSM and the depth and semantic features
from SSAM are learned by an alternating optimization scheme.
Finally, all these saliency-related features are combined together
for the final stereoscopic saliency detection via 3D deconvolution.
Experimental results show the superior performance of the
proposed model over other existing ones in saliency estimation
for 3D video sequences.

Index Terms— Visual attention, stereoscopic video, spatiotem-
poral saliency, 3D convolutional neural networks.

I. INTRODUCTION

V ISUAL attention is an important characteristic in the
Human Visual System (HVS) for visual information

processing. It is a cognitive process of selecting the relevant
regions while acquiring the most significant visual information
from visual scenes. As an important and challenging problem
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in computer vision, saliency detection has attracted a lot of
attention in the past decades, since it can be used in various
multimedia processing applications such as object recogni-
tion [1], image retargeting [2], image compression [3], [4],
object tracking [5], defect detection [6], abnormal event detec-
tion [7] and person re-identification [8].

Saliency detection methods generally can be categorized as
either human eye fixation prediction [9]–[13] approaches and
salient object detection [14]–[18] approaches. The first one
aims to identify salient locations where human observers fixate
during scene viewing, and we call it as eye fixation regions.
The latter, salient object detection, focuses on predicting
saliency values of pixels that determine whether the pixels
belong to salient objects or not. In this paper, we focus
on human eye fixation prediction task in stereoscopic video
sequences.

Despite recent great progress in saliency detection for
2D images/videos, saliency detection for stereoscopic video
sequences remains challenging. First, it is not easy to extract
the accurate motion information in video sequences, and thus
the small and fast moving objects in video sequences are
usually difficult to be captured. For the early models of salient
motion detection, they attempt to extract moving foreground
objects as salient regions, but these methods cannot solve
the occlusion problem due to the lost foreground objects.
Furthermore, the depth properties of a visual scene typically
have significant effect on visual fixations. Some existing 3D
video saliency detection methods fuse the spatiotemporal and
depth saliency maps with fixed weights for 3D video saliency
prediction. This may ignore the intrinsic relationship between
spatiotemporal and depth features. Thus, how to extract and
combine the depth information and spatiotemporal features
such as semantic/motion cues is important to design effective
stereoscopic video saliency detection models.

Currently, there are several 3D video saliency detection
models proposed for various multimedia processing appli-
cations [11], [19], [20]. For traditional 3D video saliency
detection models, they first extract spatial, temporal and depth
features to compute spatial, temporal and depth saliency maps;
then the final saliency map for video sequences is predicted
by combining the spatial, temporal and depth saliency maps
with certain fusion method [19], [20]. Most of these methods
manually extract low-level features such as color, luminance,
and texture for spatial saliency estimation. However, they
might lose some important high-level features such as semantic
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information in 3D video sequences. Some existing methods
attempt to use linear or nonlinear combination rules to fuse
spatial and temporal saliency simply [11], [20], which may
ignore the intrinsic relationship between spatial and temporal
information due to the fixed weights used for the combination
of spatial and temporal information.

Recently, deep learning has been successfully applied
in object detection [21], semantic segmentation [22] and
saliency detection [23]–[25]. Most of these existing mod-
els in the related fields of computer vision are designed
for 2D image/video, which means they don’t consider the
depth information and they cannot be used for stereoscopic
video processing. In this study, we adopt 3D convolutional
and 3D deconvolutional neural networks to extract and fuse
spatiotemporal and depth features simultaneously to build an
effective stereoscopic video saliency detection model. One of
the significant insights of this work is that, different from tradi-
tional stereoscopic video saliency detection methods utilizing
computationally expensive optical flow for motion feature
extraction, the proposed model learn spatial and temporal
features from the raw video frames with 3D convolutional
operation. Thus, it can reduce the computational time and
decrease the required computer resources. The novelty of the
proposed method is the idea of conversion from 2D features
to 3D features for stereoscopic video saliency prediction.
Admittedly, there have been a lot of studies investigating 2D
features for 2D video saliency detection, while few works
investigate the stereoscopic video saliency detection from 2D
features to 3D features. Here, we investigate the conversion
from 2D features to 3D features for stereoscopic video saliency
detection by 3D convolutional networks and deconvlutional
networks.

In sum, we propose a novel stereoscopic video saliency
detection method based on 3D convolutional neural network
(Deep3DSaliency). A spatiotemporal saliency model (STSM)
is first designed to extract spatiotemporal features effectively.
Considering the importance of intrinsic semantic and depth
features in stereoscopic video saliency detection, we design a
stereoscopic saliency aware model (SSAM) whose parameters
are partially shared with STSM to effectively extract semantic
and depth features for stereoscopic video sequences. Taking
into account the fact that there is strong intrinsic relation-
ship among spatiotemporal, depth and semantic features for
stereoscopic video saliency detection, we design a novel joint
training scheme for the proposed two sub-models (STSM
and SSAM) to enhance the capability of feature learning and
reduce the feature redundancy.

II. RELATED WORKS

In the past decades, many effective saliency detection meth-
ods have been proposed for images [9], [15], [16], [26]–[30].
Itti et al. [9] proposed an early saliency detection model by
multi-scale center-surround contrast calculation on intensity,
color and orientation features. Different from Itti’s method
[9] using low-level features, Liu et al. [16] incorporated both
low-level and high-level features into saliency diffusion, and
learn specific formulation and boundary condition of Linear

Elliptic System with Dirichlet boundary (LESD) for images.
Jia and Han [26] computed high-level saliency prior with the
objectness concept to find potential object candidates, and
then enforced the consistency among the salient regions using
a Gaussian MRF with different weights to emphasize the
influence of potential foreground pixels. Tong et al. [15] first
calculated the bottom-up saliency map by considering global
contrast information via low level features such as Histogram
of Oriented Gradient (HOG) and Local Binary Pattern (LBP).
Secondly, a top-down saliency map is formulated based on
the reconstruction error by using a locality-constrained linear
coding algorithm [15]. The final saliency map is predicted by
combining the bottom-up and top-down saliency maps [15].
Ran et al. [27] utilized the patch distribution to compute
pattern distinctness via Principal Component Analysis (PCA)
to detect salient regions. Wang et al. [28] presented an
unsupervised method that incorporates geodesic distance into
saliency empowered video object segmentation. Tavakoli and
Laaksonen [30] introduced a bottom-up unsupervised multi-
scale hierarchical model with Independent Subspace Analysis
(ISA) architecture for human eye fixation prediction.

Besides 2D image saliency detection algorithms, there have
been also many effective saliency models proposed for 2D
video sequences [31]–[39]. Liu et al. [31] constructed a
superpixel-based graph with a virtual background node to
represent the global motion, then the author design a spa-
tiotemporal saliency propagation method in both forward and
backward directions on inter-frame and intra-frame to obtain
spatiotemporal saliency map for video saliency measurement.
Similarly, Xi et al. [32] proposed a salient object detection
method with bidirectional consistency propagation for video
sequences based on spatiotemporal background priors. They
first integrated multiple pairs of scale-invariant feature trans-
form flows from multi-frames and then uses bidirectional
consistency propagation method to generate spatiotemporal
background priors. Finally, they adopted a dual-graph-based
structure method with the background priors to calculate
final saliency map. Different from the study [32] exploit-
ing background priors, Aytekin et al. [35] calculated spec-
tral foreground based on Quantum Cuts (QCUT) method to
estimate spatiotemporal saliency by fusing local and global
information including color and motion contrast, shape and
background. In addition, the background prior is extracted
for calculating the saliency map by a constructed spatially
graph based on Manifold Ranking (MF) in several existing
algorithms [33], [40].

Different from 2D image/video saliency detection, 3D
image/video saliency detection is more challenging due to
complicated depth and motion information existing in 3D
video sequences [11], [12], [19], [20], [41]–[43]. Most of
existing methods predict saliency maps of 3D images by
fusing depth-related features and 2D visual features [11], [42].
Zhang et al. [42] proposed a bottom-up visual attention model
for 3D video by combining the features including depth,
motion, luminance, color and orientation. The authors claimed
that pixels closer to viewers and in the front of visual scenes
are more salient. Wang et al. [19] introduced a method to com-
pute the depth saliency map and integrate it with 2D salient



features for the final stereoscopic saliency map calculation.
Ferreira et al. [20] constructed a 3D video saliency detection
model by fusing spatial, temporal and depth feature maps.
Kim et al. [11] proposed a 3D video saliency model by using
low-level features including luminance, chrominance, motion,
and depth as well as high-level features of visual scenes.
Fang et al. [12] released a large-scale eye fixation databases
for stereoscopic video saliency detection and designed a
stereoscopic video saliency detection model inspired by the
laws of proximity, continuity and common fate in Gestalt
theory.

Compared with traditional approaches, Deep Convolution
Neural Network (DCNN) has made great success in the task of
saliency detection [14], [23]–[25], [44], [45], since it can auto-
matically learn rich features instead of hand-crafted features.
Li et al. [14] built a multi-task learning framework to share the
features between image semantic segmentation and saliency
detection at the same time. Moreover, Liu et al. [44] proposed
an eye fixation prediction model by adopting multi-resolution
convolutional neural network (MR-CNN) to extract three types
of saliency features including local contrast, global contrast
and top-down visual factors. Banitalebi-Dehkordi et al. [45]
designed a learning-based saliency detection model by incor-
porating low-level features such as brightness, color, texture,
motion, and depth as well as high-level cues including face,
person, vehicle, text, and horizon. Wang et al. proposed a
saliency detection model by fusing local estimation and global
search [25]. In that study, the local estimation utilizes the cues
of local contrast, texture and shape to learn patch features,
while the global search component is designed by global
contrast information, geometric features, and object candidate
cues [25]. Huang et al. [46] proposed a deep-based saliency
detection architecture by fine-tuning the existing Deep Neural
Networks (DNNs) including AlexNet [47], VGG16-net [48]
and GoogLeNet [49]. Cornia et al. [63] designed a multi-level
deep feature learning model for eye fixation prediction by a
learned prior. Li and Yu [50] proposed a saliency detection
model that incorporates multi-scale CNN features extracted
from nested windows into a deep neural network with multiple
fully connected layers.

Recently, the deconvolutional neural networks are effec-
tively applied in visualization [51], semantic segmentation
[22], [52], building extraction [53] and medical image process-
ing [54]. Zeiler and Fergus [51] proposed a visualiza-
tion method with deconvolutional network to investigate the
function of intermediate feature layers and discover the perfor-
mance contribution from each convolutional layers. In order
to predict pixel-level semantic segmentation value, some stud-
ies [22], [52] utilize deconvolutional network to act as an
feature combination and upsampling role for restoring the
original image size. Huang et al. [53] proposed a end-to-end
model based on deep deconvolutional networks for remote
sensing images, where the final extraction result is fused
by two saliency maps calculated from fully convolutional
networks [53]. Fakhry et al. [54] used residual deconvolutional
networks (RDN) to process brain electron microscopy images,
and RDN consists of two information pathways from residual
networks.

Fig. 1. Illustration of 3D convolutional operation. The kernel of 3D
convolutional layer is cube with size d × k × k, where d represents the size
of depth/temporal dimension and k stands for the spatial filter size. W and H
denote width and height of feature maps, respectively.

As indicated above, the common yet key problems in 3D
video saliency detection include how to effectively extract spa-
tial, temporal, and depth features simultaneously, and combine
them together when they are available. In this paper, we con-
struct a novel stereoscopic video saliency detection model
(namely Deep3DSaliency) by using 3D convolutional neural
networks for effectively extracting and combining spatiotem-
poral and depth features in stereoscopic video sequences.
Fig. 1 demonstrate the 3D convolutional operation. It can
be used to efficiently learn spatiotemporal features such as
motion cues for video sequences. Moreover, Tran et al. [55]
demonstrated that 3D convolutional deep networks are useful
and effective for learning spatiotemporal features by a set
of empirically explored architectures, and the feature map
generated from 3D convolutional layer can preserve temporal
information of the input video sequences. Some studies [55],
[56] have found that 3D convolutional neural networks can
capture appearance and motion cues efficiently and obtain
much better performance than 2D convolutional neural net-
works for video analysis tasks. Here, we adopt 3D con-
volutional and deconvolutional neural networks to construct
the deep models for stereoscopic video saliency detection
by extracting and combining the spatiotemproal, depth and
semantic features. The proposed model is demonstrated in
details in the next section.

III. PROPOSED METHOD

A. Architecture Overview

The proposed model is demonstrated in Fig. 2. As we can
see from this framework, the proposed method includes two
parts: STSM for spatiotemporal feature learning for video
sequences, and SSAM for depth and semantic feature learning.
Additionally, 3D DeconvNet of SSAM is used to learn saliency
by fusing depth, semantic and spatiotemporal features. First,
we feed three consecutive video frames (Lt−1, Lt , Lt+1) to
pre-train STSM for learning spatiotemporal features. Then,
we fine-tune SSAM with corresponding left and right video
frames (Lt , Rt ) as the input of 3D ConvNet, and feed the left
frame (Lt ) into 2D ConvNet. Besides, the ground truth map
Gt of video frame (Lt ) in the training set is used to calculate
the loss of forward propagation.

For simplicity, we denote d × k × k as the kernel/stride
size for 3D convolutional layer, 3D pooling layer, 3D decon-
volutional layer and 3D unpooling layer, where d represents
the kernel/stride depth in temporal dimension and k stands



Fig. 2. Architecture of the proposed stereoscopic video saliency detection model. There are the following parts in the proposed framework: STSM with three
consecutive video frames for spatiotemporal feature learning, 3D ConvNet of SSAM with corresponding left and right video frames as the input for depth
feature learning, 2D ConvNet with left video frame as the input for semantic feature learning, and 3D DeconvNet for the final saliency learning.

for spatial filter/stride size. Besides, we intend to employ
n × h × w × c to indicate the output shape of 3D convolution
and deconvolution layers, where n represents the number of
input video frames; h, w, and c are the parameters for height,
width and channels of video frames or feature maps.

B. The Spatiotemporal Saliency Detection Model

In this subsection, we introduce STSM and explain how
it could learn spatiotemporal features effectively. Compared
with 2D convolutional neural networks, many studies [56] have
shown that 3D convolutional neural network has the adequate
and good capability to learn spatiotemporal features thanks to
the operations of 3D convolution and 3D pooling.

As shown in Fig. 2, we construct a new deep neural network
STSM including a 3D convolutional network and a 3D decon-
volutional network. The 3D convolutional network consists of
twelve 3D convolution layers and five 3D max-pooling layers.
Each 3D convolutional layer includes a batch normalization
[57] and a ReLu (Rectified Linear Unites) operation, and it is
defined as follows:

f (x) =
{

x, x > 0

0, x ≤ 0
(1)

where x denotes the input feature.

In addition, due to the stride of convolutional and pooling
operations, the output feature maps will be down-sampled
and become sparse. This is the reason why we design a
3D deconvolutional network including 5 unpooling layers and
twelve 3D deconvolutional layers to learn saliency by fusing
spatiotemporal features for the proposed model. We explore a
bunch of video frames as the input of the sub-model STSM,
i.e., 2, 3, 5, 7, 9, 11, etc. We observe that noises increase
and performance decreases with more frames since more
redundant visual information will be introduced and 3D con-
volutional operation is sensitive to motion information. Thus,
the sub-model STSM takes three consecutive left video frames
(Lt−1, Lt , Lt+1) as the input of the constructed network to
learn the coherence and motion information between video
frames, which significantly contributes to 3D video saliency
detection.

Existing studies have shown that the convolutional filter
with homogenous parameters of 3 × 3 × 3 is effective for 3D
convolutional networks [56], thus we set 3D convolutional ker-
nel as d×3×3 with stride 1×1×1 in the proposed model. With
direct extension of 2D max-pooling to the temporal dimension,
many researches [56] have demonstrated that 3D max-pooling
operation can work on multiple temporal samples. As can
be seen from Fig. 2 and TABLE I, the stride sizes of five



TABLE I

THE DETAILED CONFIGURATION OF THE PROPOSED STSM AND SSAM SUB-MODELS. PLEASE NOTE THAT KERNAL AND STRIDE OF 3D OPERATIONS
IS WITH DEPTH × HEIGHT × WIDTH, AND THE INPUT AND OUTPUT SHAPE ARE WITH [BATCH_SIZE, NUMBER_OF_FRAMES, HEIGHT, WIDTH,

CHANNEL]. THE COLORED PARAMETERS ARE SHARED BETWEEN STSM AND SSAM

3D max-pooling layers of STSM sub-model are assigned as
follows in the proposed method: 1 × 2 × 2 for Pool3D2,
Pool3D3, and Pool3D4 layers; 2 × 2 × 2 for Pool3D1 and
Pool3D5 layers. We set these parameters for all 3D max-
pooling layers as above since we intend to learn more temporal
features between video frames and do not expect to combine
these temporal information at early stage. All strides of 3D
unpooling layer are set as 1 × 2 × 2 to upsample the spatial
size of feature maps, while the temporal dimension is fixed
to 1 since we aim to calculate the saliency map of unitary
frame Lt .

Meanwhile, the parameters of 3D convolutional and decon-
volutional layers are all randomly initialized by zero mean
Gaussian distribution whose standard deviation is 0.01. All
the weights of convolutional and deconvolutional layers are
iteratively updated during the back propagation procedure.
The l-th layer output feature map xl of 2D/3D convolutional
operation can be denoted as follows:

xl = f (
∑

Wl ∗ xl−1 + bl) (2)

where ∗ is convolutional operation; x (l−1) denotes the
(l-1)-th layer output feature map and Wl represents 2D/3D
convolutional filter of the l-th layer. With a bias term bl

added to the convolutional results, an active function f is
used to improve the hierarchical nonlinear mapping learning
capability.

C. The Stereoscopic Saliency Aware Model

As shown in Fig. 2, SSAM includes three components:
3D convolutional network (3D ConvNet), 2D convolutional

network (2D ConvNet) and 3D deconvolutional network (3D
DeconvNet). We first restore the spatiotemporal saliency para-
meters of pre-trained STSM to 3D ConvNet and 3D Decon-
vNet of SSAM. Note that we skip the parameters of the first
two convolutional layers and the first two deconvolutional
layers of STSM, since we intend to re-train them with cor-
responding left and right video frames to learn stereoscopic
saliency cues by randomly initialized weights, as shown in
TABLE I. The detail training scheme is described in section IV
in detail.

Additionally, we construct a 2D ConvNet to learn semantic
saliency information. It is well known that VGG16-net [48]
is a model pre-trained on the public ImageNet [58] dataset
including rich semantic features. Here, we modify VGG16-
net [48] for the saliency detection task by removing the last
three fully-connected layers while preserving the layers before
pool5 of VGG16-net [48]. We initialize the remain convo-
lutional layers of VGG16-net [48] to 2D ConvNet for fine-
tuning, which means we utilize the activation maps before the
fully-connected layers. After concatenating the learned feature
maps from 2D ConvNet and 3D ConvNet, we feed them into
3D DeconvNet to fuse semantic, depth and spatiotemporal
features for 3D video sequences and up-sample the resolution
of feature maps.

To train these two models, we propose a new robust loss
function to update the parameters based on Gaussian function
and Kullback-Leibler (KL) divergence. Huang et al. [46]
demonstrated that KL divergence is effective for training
saliency prediction deep network. The KL divergence between
generated saliency map St and the human eye fixation map Gt



can be calculated as follows:

JK L(Gt , St ) = Gt log
Gt

St
(3)

= 1

N

N∑
i=1

[gi ∗ (log(gi + ε) − log(si + ε))] (4)

where gi denotes the i -th element of the vector obtained
by ground truth map Gt ; si denotes the i -th element of
the vector obtained by predicted saliency map St ; ε is a
small non-zero constant to avoid log-zero problem and we
set ε = 1e − 4 during training. Here, we transfer Gt and St

into one-dimension vector to calculate mean average JK L with
element-wise manner.

In addition, considering the Gaussian-like property in
human eye fixation map, we measure the cost between St and
Gt by the following function:

JG (Gt , St ) = 1 − exp(− (Gt −St )2

σ2 ) (5)

= 1 − 1

N

N∑
i=1

exp−(
(si −gi )

2

δ ) (6)

where gi denotes the i -th element of the vector obtained by
ground truth map Gt ; si denotes the i -th element of the vector
obtained by predicted saliency map St ; δ is a small non-zero
constant to avoid denominator to be zero, and we set δ =
1e−4. Here, we transfer Gt and St into one-dimension vector
to calculate mean average with element-wise manner.

In Eq. (3), the smaller KL divergence indicates higher
accuracy in saliency prediction. Thus, the final objective loss
function of the proposed deep model can be defined as follows:

J = JG + JK L + γ ‖ W ‖2
2 (7)

where ‖ W ‖2
2 denotes L2-norm regularization term on

parameters; γ is a hyper-parameter to balance the trade-off
between the loss and the regularization.

Moreover, we adopt Adaptive Moment Estimation
(Adam) [59] to optimize the proposed model. Adam is
an optimization method using the first moment estimation
and second moment estimation of gradient to update the
learning rate adaptively.

IV. EXPERIMENT RESULTS

In this section, in order to demonstrate the saliency predic-
tion performance of the proposed model, we first describe the
datasets used in the training and testing stages in detail. Then
we introduce the implementation details of the proposed model
and evaluation methods in this section. Besides, we report
the performance evaluation results of three comparison exper-
iments including: performance evaluation of sub-models in
the proposed model, performance comparison by using other
existing models, and cross dataset validation experiment.

A. Datasets and Evaluation Metrics

1) Datasets: In this study, we conduct the comparison
experiments by using two public datasets of stereoscopic

TABLE II

THE BASIC INFORMATION OF TWO PUBLIC EYE-FIXATION DATASETS
FOR STEREOSCOPIC VIDEO SEQUENCES: DML-iTRACK-3D [45] AND

FANG-DATASET [12]

Fig. 3. Several visual examples from FANG-Dataset [12]. First column to
final column: left-view video frames, right-view video frames, and human eye
fixation maps.

video saliency detection: DML-iTrack-3D [45] and FANG-
Dataset [12]. Each dataset contains left-view and right-view
3D video sequences with the corresponding eye-fixations from
human subjects. For convenient description, we provide the
detailed information of these datasets in Table II and provide
some samples in Fig. 3.

Similar to the studies [23] and [25], we randomly choose
27 video sequences including about 10k frames from FANG-
Dataset [12] as the training set, and the rest video sequences
in this database are used as testing set. For DML-iTrack-
3D [22], we use 15 video sequences including about 3k
frames as training set, while the remaining video sequences
are used as test set. For pre-training STSM sub-model, we use
three consecutive left video sequences in FANG-Dataset [12]
and DML-iTrack-3D [45] as the input to effectively learn
spatiotemporal features. For re-training SSAM sub-model,
we use the corresponding left and right video frames in FANG-
Dataset [12] and DML-iTrack-3D [45] as the input to 3D
ConvNet of SSAM for depth feature learning, and the left
video frame is used as the input to 2D ConvNet of SSAM for
semantic feature learning.

2) Implementation Details: During the training stage, all the
parameters are learned by optimizing the loss function. In our
experiments, the proposed deep network of 3D video saliency
detection is implemented in Ubuntu operating system with
the toolbox, Tensorflow library [60], an open source software
for deep learning developed by Google. The experiments are
conducted on a computer with Intel Core I7-6900K*16 CPU
(3.20GHz), 64 GB RAM and Nvidia TITAN X (Pascal) GPU
with 12 GB memory. The initial learning rate is set as 1e − 5
and divided by 10 after every 4 training epochs. These two
sub-models stop training after 150K iterations in total.



Fig. 4. Visualization of learned features. Left-top to right-down: (a) input video frames; (b) ground truth maps; (c) concatenated features of SSAM;
(d) spatiotemporal features of STSM from Conv3D1_1; (e) stereoscopic features of SSAM from Conv3D1_1; (f) Deconv3D1_2 fused features of STSM;
(g) Conv3D3_2 spatiotemporal features of STSM; (h) Conv3D3_2 fine-tuned features of SSAM; (i) Deconv3D5_2 fused features of SSAM.

In our implementation, the input video frame is with RGB
format. The tensor shape of STSM sub-model is [10, 3, 224,
224, 3], where the vector means [batch size, number of frames,
height, width, channels]. The tensor shape of 3D ConvNet
of SSAM sub-model is [10, 2, 224, 224, 3]. In Fig. 1 of
the manuscript, the kernel of 3D convolutional network is
d × k × k, where d represents the size of depth or temporal
dimension and k stands for the spatial filter size. This indicates
that the perceptive field of convolutional layer is d × k × k.
In the proposed STSM sub-model, we set the 3D convolutional
kernel as d ×3×3, d means temporal dimension of the tensor
shape.

In order to accelerate the saliency prediction speed and share
the features between STSM and SSAM, we use an offline
pre-trained STSM to fine-tune SSAM. Note that STSM is
only used in the training stage and the learned spatiotem-
poral features can be preserved in SSAM well (as shown
in Fig. 4 (g) and (h). In the testing stage, we use SSAM to
compute the saliency map with the input 3D video frames
(including corresponding left- and right- views). We train
these two sub-models with different video frames (three video
frames for STSM and two for SSAM). When initializing
SSAM from STSM, we skip the first two 3D convolutional
layers of SSAM to address the problem of the different
numbers of input video frames to STSM and SSAM. The

TABLE III

THE TRAINING PROCESS OF THE PROPOSED MODEL

learned features of skipped layers are shown in (d) and
(e) of Fig. 4. With the proposed framework, we first learn
spatiotemporal features by STSM and then learn depth features
by SSAM for stereoscopic video sequences, which imple-
ments the conversion from 2D features to 3D features for
stereoscopic video saliency detection. The rich spatial and
temporal saliency features can be transferred from STSM to
SSAM, as shown in Fig. 4 (g) and (h). Finally, we use 3D
deconvolutional networks to fuse the learned spatiotemporal,
depth and semantic features, as shown in Fig. 4 (f) and (i).

Next, we describe the joint training scheme that shows how
to train the proposed model and how to transfer the spatiotem-
poral and depth information between these two sub-models



with different input for feature learning. The training process
is shown below. (We also provide the updating parameters for
STSM and SSAM in each step in Table III.)

Step 1: The 3D convolutional/deconvolutional parameters
θ0

ST S M of STSM are initialized using random zero mean
Gaussian distribution whose standard deviation is 0.01.

Step 2: We train STSM with three consecutive left-view
video frames (Lt−1, Lt , Lt+1) to learn spatiotemporal features,
and use Adam [59] to update the initial parameters θ0

ST S M to
obtain updated parameters θ1

ST S M .
Step 3: We initialize 3D ConvNet and DeconvNet parame-

ters of SSAM with pre-trained θ1
ST S M except the first two 3D

convolutional and last 3D deconvolutional layers and denote
these shared parameters as θ1

s (colored parts of TABLE I).
Step 4: We assign the remaining four layers of 3D ConvNet

and DeconvNet in SSAM by random zero mean Gaussian
distribution whose standard deviation is 0.01 and then initialize
2D ConvNet parameters of SSAM with pre-trained VGG16-
net (remove the last three fully-connected layers). These
parameters are denoted as θ0

SS AM .
Step 5: The corresponding left-view and right-view video

frames (Lt , Rt ) are fed into 3D ConvNet of SSAM, and the
left-view video frame (Lt ) is used as input to 2D ConvNet of
SSAM. Based on θ1

s (colored parts of TABLE I) and θ0
SS AM ,

we utilize Adam [59] to optimize the loss function for updating
the depth-aware parameters. Then we obtain θ2

s (colored parts
of TABLE I) and θ1

SS AM .
Step 6: We store the parameters θ1

ST S M obtained in Step 2 as
non-shared parameter set of STSM, and store the parameters
θ2

s obtained in Step 5 as shared parameter set of STSM. With
θ1

ST S M and θ2
s , we use Adam [59] to train STSM sub-model for

collecting shared parameter set θ3
s (colored parts of TABLE I)

and non-shared parameter set θ2
ST S M .

Step 7: We store the parameters θ1
SS AM obtained in Step 5 as

non-shared parameter set of SSAM, and store the parameters
θ3

s obtained in Step 6 as shared parameter set of SSAM.
With θ1

SS AM and θ3
s , we use Adam [59] to train SSAM sub-

model for obtaining shared parameter set θ4
s (colored parts of

TABLE I) and non-shared parameter set θ2
SS AM .

Step 8: We repeat the above steps (5)-(7) to share parameters
between STSM and SSAM. After three repeats, we obtain two
robust sub-models and get the final parameters θST S M , θSS AM

and θs .
3) Evaluation Metrics: Similar with [12], [14], [41],

and [61], we report the quantitative performance evaluation
results with several popular metrics including: Pearson’s Lin-
ear Correlation Coefficient (CC), Receiver Operating Char-
acteristics (ROC) Curve, Area Under ROC Curve (AUC),
Shuffled AUC (sAUC), Normalized Scanpath Saliency (NSS)
and Kullback-Leibler Divergence (KLD). For these evaluation
metrics, we downloaded the source code1 for their implemen-
tations by MIT Saliency Benchmark.2

CC is used to quantify the correlation and dependence,
demonstrating statistical relationship between the saliency
maps and ground truth maps. CC is used to measure the degree

1https://github.com/cvzoya/saliency/tree/master/code_forMetrics
2http://saliency.mit.edu/

of linear correlation between the saliency map and ground
truth map, and it is commonly defined as follows:

CC(g, s) = cov(s, f )

σsσg
(8)

where cov(s, g) denotes the covariance of saliency map s
and ground truth map g; σs and σg stand for the standard
deviation values of the saliency map s and ground truth map
g, respectively. The range of CC values is [0,1]. Obviously,
the lager CC value means the better performance of the
saliency detection model. Specifically, it’s a perfect correlation
between predicted saliency map and human eye fixation map
when the correlation score is close to 1.

As one of the most famous evaluation methods in the field
of saliency detection, ROC curve and area under ROC curve
(AUC) are also used for evaluating the performance of binary
classifier with flexible thresholds. The pixel values of predicted
saliency map above the threshold are classified as fixation
points while the remain pixels are regarded as non-salient
points. With the varied threshold, ROC curve can be plotted by
false positive rate (FPR) and true positive rate (TPR), which
are defined as follows:

F P R = M ∩ Ḡ

Ḡ
(9)

T P R = M ∩ G

G
(10)

where M represents the binary mask of the saliency map
generated by a series of varying discrimination thresholds on
the saliency map; G denotes the binary ground truth map
while Ḡ stands for the reverse of G. The AUC and sAUC
values are calculated by the area under ROC curve, which
indicates the detection accuracy between predicted saliency
maps and human eye fixations. In order to avoid the dramatic
influence with AUC introduced by center bias effect, a shuffled
AUC (sAUC) metric is widely used in standard evaluation of
saliency detection. sAUC is proved to be more robust and
credible than AUC [61]. Similar to CC, the lager AUC value
also means the better performance of salient object detection
model.

Furthermore, NSS attempts to collect the difference values
between human fixation map and the saliency map with zero
mean and unit standard deviation. It is also widely adopted to
evaluate the performance of saliency detection methods. NSS
can be defined as follows:

N SS(g, s) = 1

σs
(s(gi , g j ) − μs) (11)

where s and g denote the saliency map and corresponding
ground truth map; (gi , g j ) is the pixel location of the ground
truth map; μs and σs represent the mean value and the
standard deviation of the saliency map, respectively. Typically,
the higher NSS value means better performance of the saliency
detection model.

KLD is also called relative entropy and it is used to measure
the dissimilarity between the ground truth map and predicted
saliency map. KLD can be calculated by the following for-



mula:

K L D(g, s) =
∑

g(i, j) log
g(i, j)

s(i, j)
(12)

where s and g denote the saliency map and corresponding
ground truth map; g(i, j) and s(i, j) denote the pixel value of
the ground truth map and predicted saliency map at location
(i, j), respectively. Generally, the performance of the saliency
detection model is better with the smaller KLD value.

B. Performance Evaluation of Sub-Models in the
Proposed Model

We show the experimental results of the proposed two sub-
models of STSM and SSAM to demonstrate the advantages of
the proposed model. We first provide some visual comparison
samples from these two sub-models in Fig. 6, which demon-
strates that the pre-trained STSM model can be used to provide
rich spatiotemporal features for stereoscopic video sequences.
As can be seen from Fig. 6, even though STSM and SSAM
model can obtain relatively accurate saliency results, there are
some wrongly detected fixation locations in the spatiotemporal
saliency maps. As shown by the saliency samples in Fig. 6,
for SSAM, the moving objects such as the woman and bus
in the fourth and fifth columns can’t be detected as salient
region since SSAM doesn’t consider the motion factor between
consecutive video frames. For STSM, the objects such as white
box and pedestrians in the third and fifth columns cannot be
detected completely, since this model doesn’t consider the
effect of semantic and depth cues for stereoscopic video.
Compared with these two sub-models, the overall proposed
model by combing SSAM and STSM can obtain much better
saliency results, as demonstrated by the second row (ground
truth maps) and the final row in Fig. 6.

Meanwhile, we show the quantitative experimental results
of the proposed two sub-models in Table IV with AUC, CC
and NSS values. From Table IV, we can observe that the
proposed model can obtain better saliency prediction results
than STSM and SSAM, as demonstrated by the higher AUC,
CC and NSS values of the proposed model than those from
STSM and SSAM in Table IV. Additionally, we provide ROC
curves of these models in Fig. 5, which also demonstrate
the performance improvement of different sub-models for
the proposed model. These comparison results demonstrate
that both the learned features from STSM and SSAM can
contribute much to the final saliency prediction results for
stereoscopic video sequences.

We further use some existing 2D video saliency detec-
tion models including SAG2DV [28], LGGR2DV [39], and
FCN2DV [62] for performance evaluation of the proposed
STSM. From Table IV, we can observe that STSM can obtain
better performance of saliency prediction than other existing
ones, which can be demonstrated by higher AUC, sAUC, CC
and NSS values (lower KLD value) of STSM than these of
other existing models.

C. Comparison Experiments by Using Other Existing Models

In this experiment, we compare the proposed model
against several existing saliency detection methods including

Fig. 5. ROC comparison of different models, including the SpatioTemporal
Saliency Model (STSM), the Stereoscopic Saliency Aware Model (SSAM)
and the proposed model.

TABLE IV

COMPARISON RESULTS OF DIFFERENT MODELS, INCLUDING STSM,
SSAM, THE PROPOSED (THE PROPOSED MODEL), AS WELL AS THE

2D VIDEO SALIENCY MODELS (SAG2DV [28], LGGR2DV [39],
FCN2DV [62])

Fig. 6. Visual comparison samples from different models. First row to
final row: original 3D video frames; the ground truth maps (GT); saliency
maps from SSAM; saliency maps from STSM; final saliency maps from the
proposed model.

Fang3DV [12], Ferreira3DV [20], Zhang3DV [42], SALICON
[46], ML-NET [63], MDF [50], MultiTask [14], UHM [30].
Among these state-of-the-art approaches, Fang3DV [12], Fer-
reira3DV [20] and Zhang3DV [42] are designed for stereo-
scopic video saliency detection by hand-crafted low-level
features; SALICON [46], ML-NET [63], MultiTask [14] are
deep-based methods for image saliency detection; UHM [30]
is a bottom-up eye fixation prediction method proposed for
images; MDF [50] is a 2D video saliency detection model.



Fig. 7. Visual comparison samples from different saliency detection models on dataset FANG-Dataset [12] (first four columns) and DML-iTrack-3D [45]
(final four columns). First row to final row: original 3D video frames, the ground truth maps (GT), saliency maps from Fang3DV [12], Ferreira3DV [20],
Zhang3DV [42], MDF [50], MultiTask [14], SALICON [46], UHM [30], ML-NET [63], and the proposed model.

Currently, there is rarely deep neural network based video
saliency detection models in the literature. And thus, we use
several deep-based image saliency detection models (SALI-
CON [46], ML-NET [63], MDF [50], MultiTask [14]) for
comparison in this study. Note that we conduct this experiment
on independent train and test set of FANG-Dataset [12] and
DML-iTrack-3D [45].

Among these methods, Fang3DV [12] is a stereoscopic
video saliency detection model published by ourselves, and
we use the source code of our previous work to calculate
saliency results. Since there is no public source code for
Ferreira3DV [20] and Zhang3DV [42], we implement these
two models based on their papers. For these implementations,
we obtain the similar experiment results with those presented
in their original papers [20], [42]. The authors of some
existing saliency detection models including SALICON [46],
ML-NET [63], MDF [50], MultiTask [14], UHM [30] publish
their source code in the authors’ Github or Homepages, and we
download their source code to compute experimental results.

We provide some visual comparison samples from different
saliency detection models in Fig. 7 on FANG-Dataset [12]
(first five columns) and DML-iTrack-3D [45] (final five
columns). It can be seen that the saliency maps obtained
from other existing methods contain some noises, as shown
by the fact that some non-salient regions are detected as the
salient regions in some saliency maps generated from existing
methods. For example, as shown in the forth and eighth
columns in Fig. 7, we can see that the saliency maps from
MDF [50] and Fang3DV [12] mainly detect the high-contrast
edge and compact regions as salient (these regions belong to
non-salient parts). The reason is that these saliency detection
models of MDF [50], UHM [30] and Fang3DV [12] mainly
consider the local/global contrast and compactness for saliency
calculation. Although the saliency maps of Ferreira3DV [20]
and MultiTask [14] can obtain relatively better results than
Zhang3DV [42]. However, as shown in the fourth and seventh
rows in Fig. 7, the saliency maps from Ferreira3DV [20]
and MultiTask [14] include many wrongly detected salient



Fig. 8. ROC comparison of different saliency models on dataset FANG-Dataset [12] (left) and DML-iTrack-3D [45] (right). The results are collected from
methods including Fang3DV [12], Ferreira3DV [20], Zhang3DV [42], SALICON [46], ML-NET [63], MDF [50], MultiTask [14], UHM [30], the proposed
model with independent dataset validation (Proposed-Indep), and the proposed model with cross dataset validation (Proposed-Cross).

TABLE V

COMPARISON OF DIFFERENT SALIENCY DETECTION MODELS ON FANG-DATASET [12] AND DML-iTRACK-3D [45]. THE RESULTS ARE COLLECTED

FROM METHODS INCLUDING FANG3DV [12], FERREIRA3DV [20], ZHANG3DV [42], SALICON [46], ML-NET [63], MDF [50], MULTITASK

[14], UHM [30], THE PROPOSED MODEL WITH INDEPENDENT DATASET VALIDATION (PROPOSED-INDEP) AND THE PROPOSED MODEL

WITH CROSS DATASET VALIDATION (PROPOSED-CROSS). TIME DENOTES THE TIME COST OF SALIENCY PREDICTION PER FRAME

regions. Compared with other existing methods, Fang3DV
[12], SALICON [46] and ML-NET [63] can obtain relatively
better saliency prediction results, as shown in the third,
eighth and tenth rows of Fig. 7. However, there are still
some background regions detected as salient in the saliency
results by Fang3DV [12], SALICON [46] and ML-NET [63],
as shown in the second and eighth columns in Fig. 7. On the
contrary, the proposed saliency detection model can obtain
more accurate saliency prediction results for stereoscopic
video sequences thanks to the used STSM and SSAM for the
semantic, spatiotemporal and depth aware feature extraction,
as shown in the last column of Fig. 7.

Meanwhile, we show the quantitative experimental results
in Table V on FANG-Dataset [12] and DML-iTrack-3D
[45], where CC, AUC and NSS values are collected from
the average of test set, including 20 video sequences in

FANG-Dataset [12] dataset and 12 video sequences in DML-
iTrack-3D [45] dataset, respectively. We denote the proposed
model with independent dataset validation as Proposed-Indep
in these tables. As shown in Table V, MDF [50] and UHM [30]
obtain the lowest performance in 3D video saliency prediction,
while Fang3DV and Ferreira3DV [20] can keep relatively
high performance. This demonstrates that it is effective to
consider the depth and spatiotemporal information for 3D
video saliency detection. In Table V, we can observe that
Fang3DV [12] can obtain better performance than other exist-
ing related methods, which further demonstrates that Gestalt
based uncertainty weighting fusion method can obtained rel-
atively good results for 3D video saliency detection. From
Table V, we can observe that the proposed method can obtain
better stereoscopic video saliency prediction performance than
other related ones, as shown by the highest CC, AUC and NSS



TABLE VI

THE IMPLEMENTATION DETAILS AND TESTING CONDITIONS FOR THE COMPARED MODELS.
TIME DENOTES THE TIME COST OF SALIENCY PREDICTION PER FRAME

values among the compared models. We also provide the ROC
curves of all these methods in Fig. 8 on FANG-Dataset [12]
(left) and DML-iTrack-3D [45] (right), which also demonstrate
the better results of the proposed model than other existing
ones.

D. Cross Dataset Validation

To better demonstrate the performance of the proposed
model, we conduct a cross dataset validation experiment on
the training and testing sets of FANG-Dataset [12] and DML-
iTrack-3D [45]. More specifically, we first use the training
set of FANG-Dataset [12] to train the two sub-models, and
then adopt the testing set of DML-iTrack-3D [45] to evaluate
the performance of the proposed model. Similarly, another
experiment is conducted by using the training set of DML-
iTrack-3D [45] to train the proposed model, and predict the
saliency results by using the testing set of FANG-Dataset.

We show the quantitative experimental results of cross
dataset validation of the proposed model (denoted as Proposed-
Cross) in Table V on FANG-Dataset [12] and DML-iTrack-
3D [45]. We can observe that the proposed method can still
obtain better performance than other existing ones, which
demonstrates the robustness of the proposed model. We also
provide the ROC curves of Proposed-Cross in Fig. 8 on
FANG-Dataset [12] (left) and DML-iTrack-3D [45] (right),
which also demonstrate better performance of the proposed
model than other existing ones. Please note that we provide
the independent dataset validation results for other existing
learning-based models in Fig. 8 and Table V.

V. CONCLUSION

In this paper, a novel stereoscopic video saliency detection
approach with 3D convolutional neural networks is proposed
to effectively learn semantic, spatiotemporal and depth features
for 3D video sequences. The proposed model mainly includes
two sub-models: STSM and SSAM. We first pre-train STSM,
which aims to provide plenty spatiotemporal features between
consecutive video frames for SSAM. SSAM consists of three
components: 3D convolutional network, 2D convolutional net-
work and 3D deconvolutional network. After restoring the
pre-trained STSM features for SSAM, we fine-tune SSAM
with the input left and right video frames to extract rich

depth cues for 3D video sequences. Experimental results have
shown that there is great potential to build stereoscopic video
saliency detection model with 3D convolutional operation
for effectively learning semantic, depth and spatiotemporal
features instead of time-consuming hand-crafted features.
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