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Abstract— In content-based image retrieval (CBIR), one of the
most challenging and ambiguous tasks is to correctly understand
the human query intention and measure its semantic relevance
with images in the database. Due to the impressive capability
of visual saliency in predicting human visual attention that is
closely related to the query intention, this paper attempts to
explicitly discover the essential effect of visual saliency in CBIR
via qualitative and quantitative experiments. Toward this end,
we first generate the fixation density maps of images from a
widely used CBIR dataset by using an eye-tracking apparatus.
These ground-truth saliency maps are then used to measure the
influence of visual saliency to the task of CBIR by exploring
several probable ways of incorporating such saliency cues into
the retrieval process. We find that visual saliency is indeed
beneficial to the CBIR task, and the best saliency involving
scheme is possibly different for different image retrieval models.
Inspired by the findings, this paper presents two-stream attentive
convolutional neural networks (CNNs) with saliency embedded
inside for CBIR. The proposed network has two streams that
simultaneously handle two tasks. The main stream focuses on
extracting discriminative visual features that are tightly related
to semantic attributes. Meanwhile, the auxiliary stream aims to
facilitate the main stream by redirecting the feature extraction
to the salient image content that a human may pay attention
to. By fusing these two streams into the Main and Auxiliary
CNNs (MAC), image similarity can be computed as the human
being does by reserving conspicuous content and suppressing
irrelevant regions. Extensive experiments show that the proposed
model achieves impressive performance in image retrieval on four
public datasets.
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I. INTRODUCTION

W ITH the booming of smart phones and digital cameras,
the amount of images grows surprisingly fast in our

daily life. To maximize the value of such big visual data,
it is necessary to develop an image search approach that
is capable of efficiently and accurately retrieving images
with the desired content. For such a content-based image
retrieval (CBIR) approach, one of the key challenges is to
infer the inherent query intention expressed by a query image.
As shown in Fig. 1, confusion may arise in determining what is
the desired content, while the similarity between images may
be defined in visual and/or semantic levels [2], [3]. Actually,
the ambiguity in capturing the inherent query intention acts as
a major obstacle in CBIR.

In the past decades, hundreds of approaches have been
proposed for fast and reliable CBIR [4]–[8]. Generally speak-
ing, most of existing image retrieval methods attempt to
improve image retrieval performance from the following three
aspects: 1) constructing discriminative image features [9]–[11],
2) designing good similarity estimation schemes [12]–[15],
and 3) handling large-scale issues [16]–[20]. For example,
many hashing methods [21]–[26] have been proposed to make
the similarity computation faster and more semantic. In par-
ticular, recent advances in deep learning [27]–[30] provide
an opportunity to overcome the well-known semantic gap
in CBIR [31]–[35]. In [31], Razavian et al. extracted sub-
patches from different locations in an image and characterized
them with deep features. Such features are then compressed
to compute patch-based similarity. Gong et al. [32] extracted
deep features from patches at different scales and locations
by using Convolutional Neural Networks (CNNs) as well
as orderless pooling strategies. In [33], local deep features
were aggregated to produce compact global descriptors for
image retrieval. Typically, such CNN-based approaches can
outperform classic SIFT- or GIST-based approaches since the
features extracted by CNNs are generally considered to be
closer to the semantic attributes of images. However, such
features are extracted from the whole image, making them
sometimes inaccurate to capture and characterize the inherent
query intention (e.g., the desired content).

To develop a CBIR approach that is capable of captur-
ing inherent query intention, we first turn to a fundamental
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Fig. 1. Capturing the query intention is very important to correctly retrieve
the desired images. Toward this end, we propose attentive CNNs that start
from a Main stream for semantic prediction and an Auxiliary stream for
saliency/attention prediction, which are fused and simultaneously fine-tuned
so as to capture and characterize such inherent intention.

question: how does the human being perceive and understand
the images to be retrieved? With this question in mind, we first
conduct extensive eye-tracking experiments, from which we
collect human eye-tracking data in free-viewing images from
the Holidays dataset [10], a widely used dataset in CBIR.
From these experiments, we obtain a human fixation density
map for each image, which reveals the distribution of human
visual attention in observing the image. From the perspective
of visual saliency, such fixation density maps can be viewed as
the ground-truth saliency maps, which we believe are tightly
related to the inherent query intention when the corresponding
images are involved in CBIR. For the sake of simplification,
we use the term saliency and attention interchangeably in the
rest parts of this paper.

Given the ground-truth saliency map of each image to be
retrieved, we can further investigate an advanced question: is
visual saliency really useful in image retrieval? To answer
this question, we conduct extensive qualitative and quanti-
tative experiments that incorporate visual saliency into two
CBIR systems that both adopt the classic bag-of-word (BoW)
framework. In these experiments, the ground-truth saliency
maps generated by eye-tracking experiments (i.e., an ideal
saliency model) are used to find out the best ways to make
use of visual saliency in CBIR. In this process, different
saliency involving schemes are adopted, such as saliency filter,
saliency intensity embedding, saliency representation embed-
ding and re-ranking. Through these experiments, we find that
visual saliency is indeed beneficial to the image retrieval
task. However, the best saliency involving scheme is possibly
different for different image retrieval models. Therefore, it is
necessary to design or even learn a model-specific scheme that
can embed saliency cues inside the desired image retrieval
model.

To address this problem, we propose two-stream atten-
tive CNNs with visual saliency embedded inside for image
retrieval. As shown in Fig. 1, the Main and Auxiliary CNNs,
denoted as MAC, start from two separate streams that han-
dle different cognitive tasks. The Main stream is initial-
ized with image recognition model VGG16 [29], while the
Auxiliary stream is initialized with fixation prediction model
DeepFixNet [36]. In other words, the Main and Auxiliary
streams start from the tasks of semantic attribute prediction
and visual saliency prediction, respectively. Considering that
such semantic and saliency cues are tightly related to but
not equivalent to the inherent intention in a query image,
we further fuse them and fine-tune the entire networks on
existing image retrieval datasets. In this manner, the semantic
and saliency cues can be gradually modulated to reflect the
inherent query intention. As a result, we can obtain reliable
similarity scores between a query image and all candidate
images by using the output features of MAC, even with a
very simple �2 distance measure. Extensive experiments show
that our approach achieves impressive performance on four
public datasets. In particular, our approach further validates its
effectiveness in many synthesized challenging scenarios such
as rain/snow and low-resolution/low-quality, implying that it
can be suitable for many real-world applications.

The main contributions of this paper are summarized as
follows: 1) we extend a classic image retrieval dataset with
ground-truth saliency maps, which can be useful to further
study the effect of visual saliency in image retrieval; 2) we
explicitly evaluate the effect of the ground-truth saliency
on image retrieval and discover some effective schemes of
involving the saliency information; 3) we propose two-stream
attentive CNNs for image retrieval, which achieve impressive
performance in image retrieval on four public datasets. The
first two new contributions also make the paper remarkably
different from its conference version [1].

The rest of this paper is organized as follows: Section II
reviews related works and Section III extends a classic
image retrieval dataset with the ground-truth saliency maps.
In Section IV, we investigate several schemes to involve
saliency into image retrieval to find out whether visual saliency
is really useful in image retrieval. Section V introduces the
proposed attentive CNNs for CBIR. Section VI tests the
proposed approach, and the paper is concluded in Section VII.

II. RELATED WORK

In this Section, we review saliency-guided and CNN-based
CBIR models that are tightly related to our work.

A. Saliency-Guided CBIR

Visual saliency has been used by many CBIR systems since
it can depict the most conspicuous image content. Generally
speaking, existing saliency-guided CBIR systems can be
divided into two categories: i.e., saliency filtering systems and
saliency weighting systems. For the saliency filtering systems,
only regions with high saliency values are used for subse-
quent feature extraction. In these systems, the negative effect
of background regions is completely suppressed by directly



discarding non-salient regions. For example, Acharya and
Devi [37] directly employed the classic saliency model [38]
to generate saliency maps and then extracted feature vec-
tors with respect to these saliency maps for image retrieval.
Wen et al. [39] extracted SIFT and color features from salient
regions to retrieve images. Giouvanakis and Kotropoulos [40]
combined a classic attention model with the BoW model by
reserving SIFT features only in attention regions.

For the saliency weighting systems, a saliency map is
employed to re-weight the features extracted from the whole
images. For example, Papushoy and Bors [41] employed the
graph-based saliency model [42] to extract saliency maps and
introduced the saliency information into region-based image
retrieval system. The saliency information was involved by
weighting different regions according to their saliency scores.
In [43], [44], a histogram of saliency map was extracted as
separated image features, and it was integrated into original
similarity measure of image retrieval system. In [45], salient
contour maps were extracted to localize the objects in images.

In the systems discussed above, visual saliency is used as
a global constraint to enhance similarity estimation between
two images. Actually, many such saliency-guided models
have been proposed, but the performance gained from the
straightforward usage of visual saliency is usually not as high
as expected. It is still not clear what is the best way to involve
visual saliency into CBIR. Moreover, existing saliency models,
which are mainly developed for predicting human fixations in
free-viewing conditions, may be not suitable for the CBIR task
if they are directly used without being fine-tuned with respect
to the task. Furthermore, most of such attentive CBIR models
are developed based on classic features (e.g., SIFT), which
often perform worse than deep features in depicting semantic
attributes of the desired image content.

B. CNN-Based CBIR

Due to the remarkable success of deep learning models
in many vision tasks [46]–[54], they have been incorporated
into image retrieval in many different ways such as local fea-
ture extraction [31]–[33], [55], [56], global feature extraction
[57]–[60], hashing [61]–[63] and similarity computation
[64]–[68]. In local feature extraction, the commonly used par-
adigm is to replace the traditional local descriptors (e.g., SIFT)
with deep features. For example, Paulin et al. [55] proposed to
learn patch descriptors without supervision. In their approach,
the convolutional kernel networks were adopted to extract
patch features for matching and instance-level retrieval.

In global feature extraction, some additional cues are gener-
ally introduced to enhance the discriminative capability of the
original deep features. For example, Razavian et al. [31] used
Structure-from-Motion (SfM) method to get 3D models, which
can guide the selection of deep features. Zheng et al. [58] fused
various features by extracting the output of pooling layers in
VGG and Alexnet for image retrieval.

In CNN-based hashing, a key step is to project deep
features into more compact binary codes as well as preserving
distance invariance. For example, Xia et al. [61] proposed a
CNN-based hashing method that broke down similarity matrix

and generated the binary encoding results. Zhao et al. [63]
proposed a hashing method with deep semantic ranking. They
used CNNs to learn the ranking of retrieval results and
optimize the evaluation index.

In similarity computation, the goal is to reliably estimate the
similarity between two images. For example, Zagoruyko and
Komodakis [65] proposed to directly learn visual similarity
from image pairs by using two-stream networks. Bontar and
Lecun [66] learned the similarity measure on small image
patches by using CNNs. Zhou et al. [64] used the matching
function to integrate SIFT and deep features. A threshold
exponential match kernel method was proposed to calculate
the scores of similar images.

To sum up, CNN-based CBIR approaches demonstrate
impressive capabilities in extracting features or learning simi-
larity measures that are closer to “semantic.” However, a key
challenge for these approaches is: how to extract features only
from the desired image content so as to avoid the influence
of irrelevant distractors that are beyond the query intention?
In other words, existing CNN-based approaches can extract
powerful features with unexpected noise beyond the desired
image content. On the contrary, attentive CBIR approaches
can filter out irrelevant regions. But the classic features used
by most attentive models are relatively weak. Moreover, most
saliency models are developed for the fixation prediction task
in free-viewing conditions. It may be inappropriate to directly
use them in the CBIR task without revision. Inspired by these
facts, we propose two-stream attentive networks with saliency
embedded inside for CBIR, in which the two streams are
initialized for fixation prediction and semantic recognition,
respectively. These two streams are then fused and fine-tuned
together on image retrieval datasets so that the extracted
saliency cues and semantic features become more suitable for
the CBIR task. The novelty and contribution mainly reside
in the way we use saliency cues. Instead of computing the
saliency maps with a pre-trained saliency model first and
then incorporating them into the retrieval model, we use the
saliency extraction model as an auxiliary CNN stream. By fine-
tuning this stream on the image retrieval dataset, the saliency
cues extracted in this stream become more suitable for the
image retrieval task.

III. A CBIR DATASET WITH GROUND-TRUTH SALIENCY

To explore the role of visual saliency in CBIR, we need
to associate each image with a “ground-truth” saliency map
that is accurate enough to discover the inherent relation-
ship between saliency and CBIR. Therefore, we extend the
Holidays dataset [10] by associating each image with a fixation
density map generated in eye-tracking experiments, which can
be used as the ground-truth saliency map that performs the
best in depicting the most conspicuous image contents than
existing computational saliency models.

The INRIA Holidays dataset is widely used in CBIR.
It contains 500 image groups with different scenes or objects.
Each group contains multiple images, and the total number of
images in all groups is 1491. To evaluate an image retrieval
model, the first image in each group is often used as query,



Fig. 2. Ground-truth saliency obtained from eye-tracking experiments. (a) Original images from the Holidays dataset; (b) Fixations of multiple
subjects (blue dots); (c) Fixation density maps that can be viewed as the ground-truth saliency maps.

which results in a query set with 500 images. The other
991 images are treated as database images.

To extend the dataset with ground-truth saliency maps of
all images, we first manually divide the 1491 images into
30 subsets with about 50 images per subset. In the divi-
sion, images in each subset are expected to contain different
scenes or objects so that the visual fatigue in eye-tracking
experiments can be alleviated. Note that different subjects
may have different visual attention regions when watching the
same image. However, the spatial distribution of the attention
regions from multiple subjects can become stable when the
number of subjects free-viewing the same image grows large,
leading to a stable ground-truth saliency map. In this study,
we follow the common settings of many previous visual
saliency estimation works that determine the ground-truth
saliency map of an image by recording the visual attention
of multiple subjects. For each subset of images, we request
12 subjects (6 males, 6 females, aged between 21 and 27)
to free-view all the images, and their eye movements are
recorded with a SMI RED 500 eye-tracking apparatus. Note
that we divide the 12 subjects into several groups, and subjects
in each group free-view image subsets in an interlacing
manner so that they can avoid getting tired in eye-tracking
experiments.

In the experiments, a subject sits in a dark room and uses
a chin rest for head stabilization, and a calibration operation
is conducted before the first image from each subset is free-
viewed. Each image will be displayed for three seconds,
and we display a one-second gray screen between any two
images to clean up human visual memory. By collecting the
fixations of all the 12 subjects in their three-second free-
viewing process, we can obtain a fixation density map for
each image by replacing each fixation with a small Gaussian
blob and accumulating all these blobs. As shown in Fig. 2,
such fixation density maps can be viewed as the ground-truth
saliency map for images from the Holidays dataset. For the
sake of simplification, we normalize each map to the dynamic
range of [0, 1].

Fig. 3. Fixated regions often distribute around image centers. Left: Salient
image regions being free-viewed in eye-tracking experiments. Right: the aver-
age annotation map that accumulates per-image fixation density maps. We find
that the fixations have a strong center-bias. Approximately 52% and 79% of
fixations lie in the red (center 10% area) and yellow (center 25% area) square
boxes, respectively.

To better understand the attributes of ground-truth saliency
maps, we resize the fixation density maps of all images into
the same resolution and overlay them to form a single average
annotation map. As shown in Fig. 3, the fixated image regions
often distribute near image centers, and the average annotation
map in Fig. 3 shows a strong bias towards image centers
too. We find that 52% of fixations from all images distribute
within a small square box in the average annotation map
(i.e., the center 10% area), and 79% of fixations fall in a bigger
square box (i.e., the center 25% area). These statistical results
are consistent with the analysis of many previous saliency
models [69]–[71], implying that many computational saliency
models can be reused on the Holidays dataset to enhance the
CBIR performance.

IV. IS VISUAL SALIENCY REALLY USEFUL IN CBIR?

Given the ground-truth saliency, we can turn to an
advanced question: is visual saliency really useful in image
retrieval? Although there already exist many previous works
[37], [41], [44] that try to seek an answer by using compu-
tational saliency models [38], [42], the ground-truth saliency



Fig. 4. The CBIR framework for testing various saliency involving schemes. Under this framework, two local feature-based CBIR models are implemented,
denoted as BoW (i.e., the classic Bag-of-word model) and BoW-HE (i.e., the BoW model with Hamming embedding code [11]), respectively. In the off-line
indexing stage, each key point in database images is first mapped to the nearest visual word, and then its image ID without (BoW) or with (BoW-HE)
embedding code is inserted into the list corresponding to the visual word. In the online query stage, each key point in the query image is also mapped to the
nearest visual word, and the items in the corresponding list are returned as matches. If embedding codes are employed, the returned list will be further refined
and only top n items whose are most similar to query key point in distances among their codes are returned as matches. In this process, four saliency involving
schemes (and their combinations) are tested, including SF (saliency filter), SIE (saliency intensity embedding), SRE (saliency representation embedding) and
SRR (saliency representation re-ranking).

provides a unique opportunity to look deeper into this ques-
tion: finding the best ways to make use of visual saliency
in CBIR since the ground-truth saliency can be viewed as
the predictions of an ideal saliency model. Toward this end,
we conduct extensive experiments in this section to discover
the relationship between visual saliency and image retrieval on
the extended Holidays dataset with the ground-truth saliency.
More specifically, a popular image retrieval framework based
on local image features is employed as the baseline, and four
heuristic schemes are designed to involve saliency into CBIR.

A. The Image Retrieval Framework

In conducting the experiments, we employ the classic BoW-
based framework since it is more explainable and easier to
understand. In addition, it can also provide a high flexibility
for involving saliency information into CBIR with balanced
effectiveness and efficiency, which will provide an intuitive
impression on the influence of different saliency involving
schema. As shown in Fig. 4, a dictionary of visual words
is first constructed by employing previous clustering methods
[10], [11]. Based on the dictionary, an image can be repre-
sented as an orderless collection of visual words by replac-
ing its local features with the nearest visual words. After
inserting the visual words and their corresponding image IDs
into the inverted table, the image retrieval process can be

efficiently performed. Beyond such a classic BoW model,
we also adopt the BoW-based approach proposed in [11] that
further makes use of the Hamming embedding code (denoted
as BoW-HE). The Hamming embedding code encodes the
quantization error between a local feature and its visual word,
which can be also inserted into the inverted table to further
refine the retrieval results. Based on these two retrieval models,
we wish to find out some common trends when the ground-
truth saliency is involved into the classic BoW model and its
improved descendants.

B. Saliency Involving Schemes

Typically, there are many ways that saliency can be involved
into the BoW-based image retrieval framework. By investigat-
ing and summarizing the solutions adopted in previous works,
we design four saliency involving schemes, including:

1) Saliency Filter (SF): For both query and database
images, only the key points with saliency scores above a
predefined threshold are reserved for retrieval. All the other
key points are directly abandoned.

2) Saliency Intensity Embedding (SIE): Instead of directly
filtering out non-salient key points, the saliency values of key
points can be also embedded into the similarity computation
process as re-weighting factors. Similar to the SF scheme,
the SIE scheme only utilizes key points with saliency scores



Fig. 5. Performance of BoW and BoW-HE models when using various saliency involving schemes. The green lines in figures from the first and second rows
denote the performance of BoW and BoW-HE models, respectively. The blue curves show the performance after using various saliency involving schemes at
different thresholds (i.e., the horizontal axis).

above a predefined threshold. However, it assumes that two
key points with similar saliency scores should be assigned with
a large weight in the similarity computation. Let P1 and P2
be two key points with saliency scores S(P1) and S(P2),
respectively. We adopt a linear function to map the saliency
difference |S(P1) − S(P2)| to a non-negative weight. Note
that the parameters of the function is manually fine-tuned in
experiments to maximize the performance of the SIE scheme.

3) Saliency Representation Embedding (SRE): In the third
scheme, we extract additional features for both query and
database images. We first find out the regions whose ground-
truth saliency values are higher than the predefined threshold.
After that, we compute the average values from color channels
of these regions (e.g., hue, saturation and intensity). These
color values are then combined to form an image-specific
saliency representation, which is then embedded into the
feature vectors of all key points within the same image.

4) Saliency Representation Re-Ranking (SRR): Similar to
the SRE scheme, the SRR scheme also computes an image-
specific saliency representation for each image by using a
predefined threshold. Instead of embedding this saliency repre-
sentation into key points, we use such saliency representations
to re-rank the images retrieved from the database.

Beyond these four saliency involving schemes, we also test
their combinations, including SIE + SRE, SIE + SRR, SRE
+ SRR and SIE + SRE + SRR. Note that the SF scheme is
not combined with the other schemes since it can be viewed
as a special case of SIE (i.e., a constant re-weighting function
that outputs the same weights for all keypoint pairs).

C. Comparisons of Saliency Involving Schemes

Given the BoW and BoW-HE models as well as the saliency
involving schemes, we perform quantitative comparisons on

the Holidays dataset. Different from previous works that adopt
imperfect computational saliency models, we use the ground-
truth saliency maps in the experiments. Considering that
the ground-truth saliency maps are the ultimate objective all
existing saliency models wish to approximate, we can safely
assume that the saliency model used in the experiments is
“perfect” and the performance variation is only influenced by
the ways we use visual saliency in CBIR. In these experi-
ments, the Mean Average Precision (MAP) is employed as
the evaluation measure. By employing the saliency schemes
and varying the threshold, we demonstrate the performance
variation of the two baseline models in Fig. 5.

From the curves at the top row of Fig. 5, we can clearly
find that almost all saliency involving schemes can boost
the accuracy of the classic BoW model in image retrieval.
These results imply that the saliency information may have
the capability to identify intention regions, localize regions-
of-interest or suppress the interference of irrelevant regions.
An outlier is the SF scheme, which even makes the retrieval
performance worse than the baseline BoW model. A possible
explanation is that visual saliency is over emphasized in the SF
scheme, while non-salient regions such as the visual context of
targets can also help to retrieve the desired content (e.g., the
grassland can help to retrieve a cow). By directly filtering
out these visual contexts other than suppressing them with
smaller weights, the SF scheme leads to a severe loss of
some high discriminative key points from visual context of
the desired content and thus significantly reduce the image
retrieval performance. We also find that the best performance
is achieved by the SIE + SRE scheme, which improves
the performance of baseline model from 0.456 to 0.560.
These results imply that visual saliency should be used
by emphasizing conspicuous image contents and extracting



Fig. 6. The framework of the proposed CBIR system. The core of this framework is the attentive CNNs with saliency cues embedded inside. The proposed
CNNs contain two separate streams. The Main stream is initialized with the semantic prediction networks VGG16, while the Auxiliary stream is initialized
with the fixation prediction networks DeepFixNet. These two streams are then fused and simultaneously fine-tuned on image retrieval datasets so as to
extract features that can well capture and characterize the inherent query intention. Finally, such features are used to measure the similarity (computed as the
�2 distance) between a query image and all images in the database.

additional feature representations so as to improve the CBIR
performance.

From the curves at the bottom row of Fig. 5, we find
that sometimes the performance variations of BoW-HE are
inconsistent with the BoW model. The best performance is
achieved by the SRR scheme, which improves the performance
of the baseline BoW-HE from 0.667 to 0.697. Moreover, both
the SF, SRE + SRR and SIE + SRE + SRR schemes are
worse than the original BoW-HE model. This can be explained
by the fact that embedding codes used in the BoW-HE model
have screened the items (content information) returned for a
query key point, and the final list is already quite reliable and
relatively short. In essence, the saliency involving schemes
attempt to further filter out or suppress some irrelevant items
in the list. However, if the number of returned items is too
small, involving such a saliency scheme will cause a loss of
discriminative information and thus lead to performance degra-
dation. For example, the MAP values from the SF scheme
drop sharply when increasing the threshold (i.e., reducing
candidate items). Actually, in designing saliency involving
schemes, we are seeking a trade-off between saliency cues
and non-salient context.

From these experiments, we can tentatively draw two con-
clusions: 1) visual saliency is indeed beneficial to image
retrieval task, and our extension to the Holidays dataset pro-
vide an opportunity to assess saliency involving schemes with
an ideal saliency model; 2) the best saliency involving scheme
is possibly different for different image retrieval models.
In other words, it is necessary to carefully select or even learn
a best scheme that fits for the adopted CBIR model.

V. TWO-STREAM ATTENTIVE NETWORKS FOR CBIR

All experiments presented above are conducted on the
new benchmark. That is, each image is associated with a
fixation density map. In real-world CBIR systems, however,
it is very difficult to obtain such ground-truth saliency maps
for images from large-scale databases. Therefore, most of

saliency-based CBIR methods directly extracted saliency maps
with existing saliency models. However, different saliency
models will result in quite different saliency maps, which
can be treated as different approximations of the ground-truth
saliency map. In most cases, such saliency maps are quite
different from the ground-truth, and it is also not clear which
schemes perform the best in involving such imperfect saliency
cues into the retrieval process. To address these problems,
we propose attentive CNNs with saliency embedded inside
for CBIR. In this section, we first introduce the architecture
of the proposed Main and Auxiliary CNNs (MAC), followed
by the details about how to train such a model and how to use
it in CBIR.

A. System Framework

As shown in the framework of Fig. 6, the core of the
proposed CBIR approach is the two-stream attentive networks
with saliency embedded inside, which can be denoted as Main
and Auxiliary CNNs (MAC). Different from previous works,
MAC has two separate streams that are initialized for different
cognitive tasks. Both streams take a 224×224 image with three
channels as the input.

The Main stream is initialized as the first five major
convolutional and pooling groups of the VGG16 networks
(we display only the convolution layers in Fig. 6 due to space
limitation). Finally, the major stream will output a 7 × 7
map with 512 channels, while such a map, denoted as a 3D
matrix Xmain , contains high-level cues extracted from both
the desired image content and the irrelevant regions. As a
result, such feature maps need to be further refined to obtain
cleaner semantic features that can characterize the inherent
query intention.

Toward this end, we incorporate the Auxiliary stream to
filter out the unexpected noise from the original features
extracted by the Main stream. Saliency cues are also embedded
into MAC by using this stream. To maintain the features that
may be useful for the task of image retrieval, we initialize this



Fig. 7. DeepFixNet achieves impressive performance in predicting the most
salient targets. However, it also pops-out a large portion of the visual context
near the most salient targets and needs to be further fine-tuned on image
retrieval datasets before being applied in CBIR. (a,d,g) Images from the
Holidays dataset; (b,e,h) Ground-truth saliency maps; (c,f,i) Saliency maps
predicted by DeepFixNet.

stream with the DeepFixNet [36], the CNNs that are developed
for the fixation prediction task. In the initialization, we select
the first eight convolution layers together with the related
pooling layers and generate a 56 × 56 map with 32 channels.
After that, such a feature map enters a pooling layer and is
then reshaped to 7 × 7 maps with 512 channels. Note that
in the image retrieval task, the effect of brute transformation
is not as remarkable as in many location-sensitive tasks such
as object detection and segmentation. In other words, image
retrieval is more sensitive to the occurrences of some specific
visual patterns other than their location. Similar to the Main
stream, the output map is denoted as Xaux .

Compared with heuristic saliency models, DeepFixNet gains
impressive performance in predicting the most salient locations
(see Fig. 7). With this stream, we can filter out the features
from regions that are irrelevant to the inherent query intention.
However, Fig. 7 also shows that the results of DeepFixNet still
look different from the ground-truth saliency maps (e.g., it
also pops-out a large portion of the visual context near the
most salient targets. As a result, it may not perfectly meet the
specific requirement of visual saliency in the image retrieval
task. Therefore, the parameters of this stream, as well as the
Main stream, need to be further fine-tuned on image retrieval
datasets. Toward this end, we first conduct element-wise fusion
of the output maps from the Main and Auxiliary streams:

Xfuse = λXmain + (1 − λ)Xaux, (1)

where λ is empirically set to 0.6 to balance the output features
from the two streams (the influence of λ will be discussed

TABLE I

DETAILS OF THE 4 BENCHMARKING DATASETS

in experiments). In this manner, the fused feature map contains
both semantic and saliency cues, which is converted to a
lower dimensional feature vector via three consecutive Fully
Connected layers, denoted as FC6, FC7 and FC8, respectively.
Note that both FC6 and FC7 output 4096D feature vectors,
while FC8 outputs a vector with N components. For an
image retrieval dataset, N denotes the number of categories
formed by aggregating training images with similar contents
(such similarity is manually annotated by the human being).
By applying a softmax layer after FC8 to turn its output to
a probability vector, we can train a classification network on
image retrieval datasets by solving the minimization problem:

W∗ = arg min
W

K∑

k=1

N∑

n=1

log(pkn, ykn) + β�W�2
2, (2)

where W denote the set of network parameters of MAC. pkn is
the nth component of the probability vector generated by the
final softmax layer of MAC in processing the kth training
image. ykn is a binary indicator which equals to 1 only if
the kth training image belongs to the nth category of similar
training images. β is a constant that controls the norm of
parameters in MAC.

By minimizing the prediction error (2), MAC gains the
capability to aggregate similar images and separate dissimilar
images, while such similarity is defined from the perspective of
image retrieval. In this manner, the features generated by MAC
can well capture and characterize the inherent query intention
for CBIR. In training MAC, we adopt the Caffe platform [72]
and utilize a batch size of 16. The learning rate is initialized
as 10−6, which will decrease twice, by a factor of 10, after
the 33% and 66% of the maximum iteration number have been
reached, respectively. Moreover, a weight decay of 0.0005 and
momentum of 0.9 are used.

After the training stage, the two-stream attentive CNNs
can be used for image retrieval. Considering that the feature
dimension of FC8 varies with respect to different training
data, we adopt the 4096D feature vector generated by the FC7
layer of MAC to characterize the inherent query intention of
a new query image. After that, the similarity scores between
this feature vector and those pre-computed for the images in
the database can be computed. Since the main objectiveness is
to demonstrate the powerfulness of the proposed two-stream
attentive CNNs, we only use the simplest �2 distance as the
similarity measure, which can already generate impressive
performance by using the powerful features from MAC.

VI. EXPERIMENTS

We conduct extensive experiments to validate the effec-
tiveness and scalability of MAC from multiple perspectives,



including: (1) Effectiveness test that compares MAC with other
CBIR models; (2) Scalability test that adds one million images
into testing datasets or synthesizes more challenging real-
world scenarios like rain/snow and low-resolution/low-quality;
(3) Performance analysis that investigates the performance
variation of MAC by changing key parameters. Detailed
experiments are described as follows.

A. Settings

To conduct comprehensive evaluation of MAC, we adopt
four datasets from the areas of image retrieval and image clas-
sification. Among these datasets, Paris [73] and UKBench [74]
are two image retrieval datasets that are widely used in the lit-
erature. Flower [75] and Bird [76] are two fine-grained image
classification datasets which can be also used to benchmark
the image retrieval models [12], [77]. For each dataset, we split
them into a training set and a testing set. It is worth noting
that the manner employing the datasets for evaluation is quite
different between the proposed method and previous works.
Taking the Paris dataset (6392 images, except 20 corrupted
images) as an example, previous methods extract 55 images
corresponding to 11 distinct buildings as query images, and all
the 6392 images are treated as the image database for retrieval.
In contrast, our approach first randomly selects 5192 images
from the Paris dataset to train the network parameters and
leave the rest 1200 images as the query dataset as well as the
image database. That is, we choose each of the 1200 images as
the query image to retrieve the image from the 1200 images.
The main reason for the division lies in that the proposed
approach is a supervised model and labeled training data is
needed. In the settings, the retrieval operations are much larger
and the retrieval scenario is more challenging, leading to much
lower mAP. Details of the four datasets can be found in Tab. I.

As in Sect. IV, we adopt the Mean Average Precision
(mAP) as the evaluation metric. Instead of using the official
evaluation measure on UKBench dataset, we also choose mAP
as the evaluation metric on the UKBench dataset due to our
experimental settings. In experiments, we randomly choose
two images from the four images of each of the 5100 classes of
UKBench to construct training dataset, while the rest images
are used as testing. In this way, the official evaluation measure
becomes inappropriate since the best performance approaches
to 2 other than 4 in this settings. To provide a unified and
consistent evaluation, we employ mAP as evaluation metric
for all datasets.

One problem in comparing image retrieval models is
that the performance of learning-based models may vary
remarkably before/after being fine-tuned on specific training
data. Therefore, we compare MAC with three state-of-the-art
models and four baselines, including:

(1) BOW-HE [11]: A non-deep approach that jointly opti-
mize Bag-of-Words and embedding methods for CBIR.

(2) Siamese [65]: Two-stream CNNs that take a pair of
images as the input and output the similarity scores.

(3) Base-VGG: A baseline model formed by directly using
the 4096D features from the original VGG16 networks and
the same retrieval settings with MAC.

TABLE II

EFFECTIVENESS TEST OF FIVE MODELS ON FOUR DATASETS

(4) Base-VGG-F: Different from Base-VGG, Base-VGG-F
is further fine-tuned on the same training data used by MAC
in all experiments so that the 4096D features it generated is
refined for the retrieval tasks.

(5) Crow [51]: A state-of-the-art method on image retrieval
which is based on aggregated deep convolutional features with
cross-dimensional weighting.

(6) Selective [52]: A state-of-the-art method on image
retrieval which is based on selective deep convolutional
features.

(7) R-MAC [53]: A state-of-the-art method on image
retrieval which is based on a global representation obtained
by aggregating many region-wise descriptors based on the
convolution maps.

B. Effectiveness Test

In the effectiveness test, we fine-tune MAC and
Base-VGG-F on the training set of each dataset and compare
them with other models on the testing set. Performance of
all approaches can be found in Table II. Some representative
retrieval results of MAC can be found in Fig. 8.

From Table II, we can see that the proposed MAC model
achieves impressive performance on all the four datasets.
In particular, the MAC network outperforms Base-VGG-F,
even when they are fine-tuned on the same training data.
This may be caused by the fact that, after incorporating the
Auxiliary stream, the semantic features from irrelevant regions
can be removed, and the retrieval process will mainly focus on
comparing the “desired content” shared by query and target
images. In other words, with the assistance of feature maps
from the Auxiliary stream, the Main semantic stream perform
better in distinguishing images from different categories by
focusing on the right regions. Moreover, both the Main seman-
tic stream and the Auxiliary stream are fine-tuned on image
retrieval datasets. In this manner, we can assume that both the
semantic features and the saliency cues extracted by the two
streams become more suitable for the task of image retrieval.
That also explains the remarkable performance enhancement
from Base-VGG to Base-VGG-F after fine-tuning the original
semantic attributes on image retrieval datasets. It is worth
noting that both Crow [51] and Selective [52] methods employ
provided bounding boxes to crop the query images in their
original experiments. Similarly, the learned R-MAC [53] also
directly treats the region in the manually labeled bounding box
as the input of its network when processing the query images



Fig. 8. Representative results of MAC on four datasets. Red and blue borders indicate query images and the top three retrieval results, respectively.
Rows 1-2: Paris; Rows 3-4: UKBench; Rows 5-6: Flower; Rows 7-8: Bird.

in the Oxford and Paris datasets. However, it is rare in the
real-world application scenarios to provide bounding boxes of
query images. For fair comparison, the query images are not
cropped for all methods in our experiments. That is why the
performances of Crow [51] and Selective [52] are lower than
the base VGG model on some datasets.

Moreover, from Table II we find that the proposed MAC
network is not only suitable for the classic image retrieval
datasets but also fits for the fine-grained image classification
datasets. As shown in Fig. 8, MAC can successfully retrieve
images with fine-grained birds and flowers. This is an interest-
ing findings, implying that the usage of the Auxiliary stream
also helps maintain the unique attributes of the desired objects
while refining the noisy features. Actually, the fine-grained
classification/retrieval is much more sensitive to the noise
from irrelevant regions, while visual saliency cues can help
to “neglect” such regions in feature retrieval. In other words,
the semantic stream mainly learns about what is a bird, while
the Auxiliary stream may help in learning where is the right
place to extract such features. From these results, we can safely
conclude that incorporating an additional attention stream is
effective for the task of image retrieval.

In addition, we also conduct an experiment to verify the con-
sistency between the saliency cues extracted by the auxiliary
stream and the human visual attention-based saliency maps.
The experiment is conducted on the Holidays dataset. On this
dataset, we randomly select 1191 images and their ground-
truth saliency maps from the Holidays dataset to train a simple

TABLE III

SCALABILITY TEST ON FOUR DATASETS AFTER ADDING

A ONE-MILLION CONFUSION IMAGES FROM FLICKR1M

deconvolution layer for the auxiliary stream, while the rest
300 images are used for testing. In training the deconvolution
layer, we take the saliency cues of the auxiliary stream as the
input and learn to directly output a saliency map. On the rest
300 images of the Holidays dataset, we use the shuffled AUC
(denoted as sAUC) as the evaluation metric to measure the
consistency between the predicted and ground-truth saliency
maps. We find that the average sAUC score of the saliency
maps recovered from the saliency cues of the auxiliary stream
reaches up to 0.64, while the original DeepFixNet only reaches
0.53. This indicates the saliency cues extracted by the auxiliary
stream are consistent with the human visual attention-based
saliency maps.

C. Scalability Test

Beyond effectiveness test, we also conduct several exper-
iments to validate the scalability of MAC (and the baseline
models). Toward this end, we first incorporate the one mil-
lion images from the Flickr1M dataset [10] into the testing



Fig. 9. Representative retrieval results of MAC in rain/snow and low-resolution/low-quality scenarios. Red and blue borders indicate query images and the
top three retrieval results, respectively. Left column: results on original datasets; Middle column: results on datasets with synthesized rain/snow; Right column:
results on datasets with degraded resolution/quality.

TABLE IV

PERFORMANCE OF FOUR MODELS ON SYNTHESIZED
LOW-RESOLUTION/LOW-QUALITY SCENARIOS

sets of each dataset and run the retrieval experiments again.
Experimental results are shown in Table III. By comparing
the results in Table III and Table II, we can see that even
with so many confusion images the retrieval performance of
both MAC and Base-VGG-F drop sharply on most datasets.
However, in such a challenging setting the performance on
UKBench still reaches 0.88. Considering that Flickr1M con-
tains many objects like flower and bird, the performance of
MAC on the fine-grained datasets Flower and Bird are still
acceptable, implying that the MAC is a scalable network.

Beyond adding confusion images, in actual life many
images uploaded to the Internet are low-quality/low-resolution
ones. To further validate the effectiveness of our approach,
from the four datasets we generate their low-resolution version

and test the performance of MAC and baseline models
Base-VGG and Base-VGG-F. The performance scores are
shown in Table IV, while some representative results are
shown in Fig. 9. By comparing Table IV and Table II, we can
see that the performance only slightly decreases, while the
results in Fig. 9 validates that the proposed approach is
scalable to low-quality and low-resolution scenarios. More-
over, in such scenarios MAC still outperforms Base-VGG
and Base-VGG-F. This may be caused by the fact that the
saliency maps are less sensitive to resolution variation, and
many saliency models will resize the input image to an
extremely low resolution (e.g., 32 × 32 in [78]) to speed
up the computation process. When the resolution decreases,
the Auxiliary stream still outputs reliable cues that assists
the localization of desired content, making the whole network
more reliable.

Moreover, many images in our daily life are taken in
rain or snow, and it is necessary to develop a model that can
effectively retrieve such images. To test the performance of
image retrieval models in such scenarios, we add synthesized
rain/snow to the four datasets. As shown in Tab. V and Tab. II,
the performance scores of both MAC and the two baseline
models decrease in rain/snow scenarios. In particular, the



TABLE V

PERFORMANCE ON SYNTHESIZED RAIN/SNOW SCENARIOS

Fig. 10. Influence of fusion weight λ on Flower dataset.

performance on UKBench drops remarkably since it contains
many large-scale scenes, while the other three datasets contain
large objects that are less influenced by rain and snow, leading
to smaller performance drop. Actually, rain and snow can be
viewed as additive noise to the original images, while such
noises can be viewed as outliers in a local region. In the
convolutional operations of CNNs, such outlier will lead to
unexpected local maximum or minimum, while such wrongly
extracted local extremum will lead to inaccurate semantic
features in the Base-VGG-F. Surprisingly, the performance
decrease in MAC is often less than Base-VGG-F, which may
be caused by the fact that the Auxiliary stream is capable
to ignore such frequently appeared fake local extremum and
enforces the semantic streams focus on the attractive regions.
These results further validate the scalability of the proposed
two-stream attentive CNNs.

D. Performance Analysis

Finally, we conduct an experiment to see the influence of the
parameter λ, which controls the way that the two streams are
fused. By varying λ from 0.0 to 1.0 with a step of 0.2, we test
the performance of MAC on the Flower dataset and obtain a
performance curve (as shown in Fig. 10). We find that over-
emphasizing either stream will lead to degraded performance,
and the best performance is achieved at λ = 0.6, indicating
the Main stream has weight 0.6 and the Auxiliary stream has
weight 0.4. This also implies that semantic attributes play the
most important role in CBIR, while saliency cues provide
supplementary cues to improve the retrieval effect.

VII. CONCLUSION

In this paper, we make comprehensive and systematic
study to explicitly discover the effect of visual saliency on
image retrieval in a quantitative manner. The key finding is

that salient information indeed has positive effect on image
retrieval and it is difficult for hand-crafted involving schemes
to best adapt a specific image retrieval model. To naturally
involve salient information into image retrieval in a self-
learning and optimal manner, we propose two-stream attentive
CNNs for image retrieval. By initializing a Main stream
for semantic feature extraction and an Auxiliary stream for
saliency prediction, the two-streams fused and fine-tuned on
image retrieval datasets. In this manner, the capability of
the whole network in capturing inherent query intention can
be improved. Experimental results show that the proposed
approach has impressive performance on two image retrieval
datasets and two fine-grained image classification datasets.
Moreover, its performance on retrieving low-resolution/
low-quality and rain/snow images are also very promising.

In our future work, we will seek to train a network with
saliency cues embedded in several locations of semantic
feature extraction so as to extract more discriminative features
for outdoor scenes. Moreover, the hashing operations will be
embedded into the network so that the retrieval process can
become much faster.
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