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Abstract— The performance of video saliency estimation tech-
niques has achieved significant advances along with the rapid
development of Convolutional Neural Networks (CNNs). How-
ever, devices like cameras and drones may have limited computa-
tional capability and storage space so that the direct deployment
of complex deep saliency models becomes infeasible. To address
this problem, this paper proposes a dynamic saliency estimation
approach for aerial videos via spatiotemporal knowledge distil-
lation. In this approach, five components are involved, including
two teachers, two students and the desired spatiotemporal model.
The knowledge of spatial and temporal saliency is first separately
transferred from the two complex and redundant teachers to
their simple and compact students, while the input scenes are
also degraded from high-resolution to low-resolution to remove
the probable data redundancy so as to greatly speed up the
feature extraction process. After that, the desired spatiotemporal
model is further trained by distilling and encoding the spatial
and temporal saliency knowledge of two students into a unified
network. In this manner, the inter-model redundancy can be
removed for the effective estimation of dynamic saliency on
aerial videos. Experimental results show that the proposed
approach is comparable to 11 state-of-the-art models in estimat-
ing visual saliency on aerial videos, while its speed reaches up
to 28,738 FPS and 1,490.5 FPS on the GPU and CPU platforms,
respectively.

Index Terms— Spatiotemporal knowledge distillation, visual
saliency estimation, aerial video.
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I. INTRODUCTION

THE rapid development of mobile devices further empha-
sizes the importance of effectively and efficiently estimat-

ing dynamic visual saliency on videos. For example, a drone,
one of the most popular mobile devices in recent years,
is capable of collecting high-resolution aerial videos in various
scenarios due to its flexible operability. To analyze these
high-resolution videos on the drone with limited memory
and computational capability, a highly efficient and accurate
saliency model is required so that the limited resources can
be spent on the attractive visual content with a high priority.
By understanding the human attentional behavior to aerial
data, the visual saliency models have the ability to automati-
cally detect, locate and mine the most important part of mas-
sive visual information and can facilitate subsequent complex
drone vision tasks in both speed and accuracy, such as drone
event understanding [1], navigation [2], target tracking [3],
obstacle avoidance [4], and object detection [5].

In the past decades, many models have been constructed
in visual saliency estimation by defining comprehensive
rules [6]–[9] or using deep learning frameworks [10]–[12].
In particular, the deep models have achieved impressive
performance along with the development of large-scale bench-
mark datasets [13]–[15] but at the cost of huge memories and
massive computations. However, these “ground-level” deep
models may have difficulties to be directly deployed on drones
for processing high-resolution aerial videos. The main reasons
are two-fold: 1) the limited computational resource on drones
is far from sufficient to meet the requirement of complex deep
models; and 2) the ground-level saliency models may have
difficulties to handle aerial videos since the data distributions
change remarkably. Additionally, most existing video saliency
models are suffering from slow computation and low esti-
mation accuracy, since they rely on motion information from
time-consuming optical flow and are designed without taking
the spatiotemporal consistency in the inference process into
consideration. As a result, to deploy these complex saliency
models on resource-limited drones, two issues should be
addressed first: 1) How to reduce the computational cost and
memory footprint of deep saliency models without remarkable
loss of accuracy? and 2) How to fuse both spatial and temporal
cues to extract powerful features that apply to aerial videos?

To address these issues, we inspect existing deep mod-
els and find two major factors that restrict the computa-
tional cost: the model redundancy and the data redundancy.
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Fig. 1. Low-resolution frames lack details but salient targets can still be
easily localized by the human-being. Since the directly deployment of complex
saliency models on resource-limited drones may have difficulty in processing
high-resolution aerial videos, a feasible solution is to distill the knowledge
from complex models into a simple and compact model and remove the data
redundancy (e.g., resolution degradation) to ensure highly efficient aerial video
processing.

Typically, some researchers tend to train deeper networks
from large-scale datasets for dynamic saliency estimation.
However, the models may become highly redundant for such
a low-level vision task, leading to the dramatic increase of
computation and memory costs. This fact facilitates the studies
of model compression [16]–[19] that aim to remove the
redundancy to generate compact models by parameter pruning
and quantization. In this way, the resulting compact models
usually have low computational cost and memory footprint but
often encounter a sharp accuracy drop. To address this issue,
some works [20]–[22] proposed to distill the knowledge from
complex models and then transfer to simple ones without a
significant performance drop.

Beyond the model redundancy, the data redundancy is less
considered. Actually, saliency estimation on aerial scenarios
is a low-level vision task that does not need so many details
represented by high-resolution frame sequences. As shown in
Fig. 1, salient targets in the heavily blurred low-resolution
frames can still be easily localized by the human-being without
such details. This implies that there exist strong data redun-
dancy that is not necessary for the saliency estimation task.
As a consequence, removing such data redundancy may be
another way to further reduce the computational cost.

Inspired by these two findings, this paper proposes a
spatiotemporal knowledge distillation approach. As shown in
Fig. 2, the framework of this approach consists of five com-
ponents, including two teachers, two students and the desired
spatiotemporal model. The knowledge of visual saliency is
transferred from the spatial and temporal teachers to the
final spatiotemporal model by using the spatial and tem-
poral students as the bridges. In this process, the spatial
and temporal knowledge is first separately extracted from
complex and redundant teachers and then transferred into

simple and compact students to remove the intra-model redun-
dancy. Meanwhile, the input scenes are also degraded from
high-resolution to low-resolution to remove the data redun-
dancy. After that, the desired spatiotemporal model is trained
by distilling and encoding the spatial and temporal knowledge
of the two students into a unified network to further remove
the inter-model redundancy. By step-wisely removing the
intra-model, data and inter-model redundancies, the dynamic
saliency of aerial videos can be effectively estimated with
an extremely high speed. Experimental results show that the
proposed approach outperforms ten state-of-the-art models.
In particular, its speed can reach up to 28,738 FPS and
1,490.5 FPS on the GPU and CPU platforms, respectively.

Our main contributions are summarized as follows:
1) We propose a two-step knowledge distillation framework
that can greatly reduce the computational cost with little
accuracy drop in aerial video saliency estimation; 2) We design
a lightweight spatiotemporal network that can extract and fuse
both spatial and temporal saliency cues; and 3) we conduct
extensive experiments and prove that our approach achieves an
ultrafast speed and is comparable to 11 state-of-the-art models.

The rest of this paper is organized as follows: Section II
reviews related works and Section III presents the spatiotem-
poral knowledge distillation. Section IV benchmarks the pro-
posed model. Finally, Section V concludes the paper.

II. RELATED WORKS

In this paper, we aim to distill knowledge from well
pretrained saliency models that serve as teachers and transfer
their knowledge to the students to facilitate efficient saliency
estimation. Therefore, we present a brief review of visual
saliency models and knowledge distillation studies.

A. Visual Saliency Models

The recent advances in the field of saliency estimation
from videos result in many visual saliency models [23]. These
models can be roughly grouped into three categories accord-
ing to their features and frameworks, including heuristic,
shallow-learning and deep-learning saliency models.

The heuristic saliency models [24]–[29] generally use
hand-crafted features and design heuristic rules to perform
visual saliency estimation in a bottom-up or top-down man-
ner. The bottom-up models are stimulus-driven and compete
fairly to pop-out conspicuous visual signals. In these models,
hand-crafted features such as directions, colors and intensities
as well as heuristic fusion rules are widely used. For example,
Fang et al. [30] proposed a spatiotemporal framework to
separately detect the spatial and temporal saliency cues. These
cues were then fused according to the spatial compactness and
the temporal motion contrast. Later, they (Fang et al. [31])
proposed uncertainty weighting to fuse the spatial and tempo-
ral saliency results. However, such unbiased heuristic fusion
strategies may have difficulties in suppressing background
distractors. To alleviate this issue, some task-driven models
heuristically incorporate high-level factors in a top-down man-
ner. For example, Borji et al. [32] modeled the task-driven



Fig. 2. System framework. The framework consists of five components: two teachers, two students and the desired spatiotemporal model. The knowledge is
transferred from teachers to the desired model via two steps: 1) distilling the knowledge separately from the spatial teacher Ts and the temporal teacher Tt
to their students Ss and St , respectively. The distillation is conducted along with resolution degradation to remove data redundancy. 2) transferring and fusing
the knowledge of Ss and St into a unified spatiotemporal model Sst to improve the accuracy and speed of dynamic saliency estimation on aerial videos.

visual attention with a unified Bayesian approach by inte-
grating global scene context, previous attention locations
and motion actions to predict the next attention locations.
Chen et al. [33] predicted video saliency by combining the
bottom-up saliency maps and the top-down ones through
point-wise multiplication. Generally speaking, these heuris-
tic saliency models often perform efficiently in estimating
saliency but may suffer from poor accuracy and low robustness
since the hand-crafted features and heuristic fusion strategies
may be not optimal for all scenarios.

Inspired by the pros and cons of heuristic models,
the shallow-learning saliency models [34]–[37] aim to directly
learn an optimal fusion strategy of hand-crafted features
from data. For example, the saliency model proposed by
Vig et al. [36] used supervised learning to fine-tune the free
parameters in dynamic scenarios. Fang et al. [38] proposed
an optimization framework with pairwise binary terms by
learning a set of discriminative subspaces to pop out targets
and suppress distractors. Moreover, some works [35], [39]
proposed to apply learning algorithms to combine multi-level
features into the saliency estimation processes. For example,
Song et al. [39] estimated saliency by fusing the low-level
and high-level features as well as the center-bias priors. Due
to optimized fusion strategy, learning-based saliency models
generally achieve promising results. However, these models
inherently share an upper bound in the performance since the
hand-crafted features used may be also not optimal.

To address the feature issue, deep saliency models [40]–[43]
proposed to use feature representation learned from data by
using Convolutional Neural Networks (CNNs) [44], [45].
Some of these models directly employ the state-of-the-
art deep models pretrained in large-scale visual tasks as

feature extractors. For example, Kümmerer et al. reused
AlexNet [46] and VGG-19 [47] to generate high-dimensional
features for fixation prediction in [48] and [49], respectively.
In contrast, Pan et al. [50] proposed to train a shallow
CNN and a deep CNN in an end-to-end manner for fixation
prediction. In addition, some deep saliency models focus on
designing specific architectures or loss functions. For example,
Imamoglu et al. [51] utilized the objectiveness scores predicted
by the features selected from CNNs to detect conspicuous
regions. Due to the rich knowledge extracted by the complex
deep saliency models, the deep models usually outperform
heuristic and shallow-learning models in accuracy. However,
the computational cost often increase remarkably due to the
rich redundancy in both models (e.g., unnecessary compu-
tations) and data (e.g., unnecessary high-resolution inputs),
which prevents them from being directly deployed on mobile
devices such as drones and cameras. Therefore, it is necessary
to compress or distill these saliency models to greatly reduce
the computational cost without remarkable performance drop.

B. Knowledge Distillation

Knowledge distillation [21] is a specific model compression
technique that distills the inherent knowledge from a complex
teacher model to a simple student one so as to greatly
reduce the model redundancy and maintain a comparable
performance. To this end, the student model is trained under
the supervision of the teacher model in many existing works.
For example, Hinton et al. [21] introduced the soft labels
generated by a teacher model as an extra supervision, which
was combined with the hard supervision defined by data
labels. There also exist some other forms of supervision



such as classification probabilities [21], feature representa-
tions [22], [52], and inter-layer flows (the inner product of
feature maps) [53]. Zhang et al. [54] proposed deep mutual
learning, which conducted online distillation in one-phase
training between two peer student models. Rusu et al. [55]
proposed a multi-teacher single-student policy to distill knowl-
edge from multiple teachers into a single student.

Generally speaking, these knowledge distillation approaches
provide a powerful way to reduce the model redundancy,
which is efficient in dealing with high-resolution static saliency
estimation. However, the data redundancy is less considered,
especially in low-level vision tasks like visual saliency esti-
mation. Actually, saliency estimation is a low-level vision
task that does not need so many details represented by
high-resolution frame sequences. By removing such data
redundancy hidden in the high-resolution as well as the
consecutive video frames, the speed of a dynamic saliency
model can be greatly boosted. To this end, we propose a spa-
tiotemporal knowledge distillation approach to simultaneously
reduce both the model and data redundancies while the model
accuracy can be well maintained. Note that it is an approach
of inductive transfer similar to [56] which uses relevant tasks
to improve the generalization of the main task.

III. THE PROPOSED APPROACH

In this section, we present a Spatiotemporal Knowledge
Distillation (SKD) approach for dynamic saliency estimation
in aerial videos. The proposed approach operates in two major
steps: the separate spatial/temporal knowledge distillation, and
the joint spatiotemporal knowledge transfer. Here we start with
a brief overview of the approach and then elaborate on these
two steps as well as their implementation details.

A. The Framework

As shown in Fig. 2, the proposed SKD approach consists
of five major components, including a spatial teacher, a tem-
poral teacher, a spatial student, a temporal student and the
desired spatiotemporal model. Note that the spatial/temporal
teachers can be any complex spatial/temporal saliency models
pretrained on massive high-resolution data. Typically, such
teacher models give impressive performances in predicting
spatial saliency (e.g., DVA [10], SalNet [50] and SSNet [57])
or temporal saliency (e.g., TSNet [57]) at the expense of high
computational cost. As a result, the objective of the proposed
distillation framework is to distill their knowledge into much
simpler student models and finally the desired spatiotemporal
saliency model by removing the model and data redundancy
in two consecutive steps.

In the first step, we separately distill the knowledge from
spatial and temporal teachers to the two students to reduce
intra-model redundancy, respectively. Meanwhile, the high-
resolution inputs, which often contain unnecessary details
for low-level vision tasks such as saliency estimation, are
degraded into low-resolution ones to remove data redundancy.

In the second step, the knowledge in the spatial and temporal
students is jointly transferred and encoded into the desired

spatiotemporal model. In this manner, the inter-model redun-
dancy of two students in extracting common visual features
can be also removed. As a result, the intra-model, inter-model
and data redundancies are step-wisely removed, leading to a
model with high accuracy and extremely low computational
cost.

B. Separate Spatial and Temporal Knowledge Distillation

The separate spatial and temporal distillation operations
in the first step force two simple students to mimic the
behavior of two complex teachers in a spatial high-resolution
frame and a temporal consecutive frame pair, respectively.
Let D = {In, Yn}N

n=1 be the training dataset containing
N samples and In be an high-resolution frame with the
ground-truth saliency map Yn . Then, we can easily compute
their resolution-degraded version as D̂ = { În, Ŷn}N

n=1 by using
a resolution-reduction operation R so that În = R(In) and
Ŷn = R(Yn). For the sake of simplification, we denote the
spatial and temporal teachers as Ts and Tt , respectively.
Similarly, the spatial and temporal students are denoted as Ss

and St , respectively. Note that Ts and Ss take a single frame
as the input, while Tt and St use a pair of consecutive frames.

Inspired by [21], we first generate the high-resolution soft
labels of teachers and use their resolution-degraded versions
to supervise the training process of the two students. In this
sense, the spatial and temporal students are trained to optimize
the following spatial and temporal losses, respectively.

Ls = µ · Lsof t

(
Ss( În),R(Ts(In))

)

+ (1 − µ) · Lhard

(
Ss( În), Ŷn

)
, (1)

Lt = µ · Lsof t

(
St ( În, În+1),R (Tt (In, In+1))

)

+ (1 − µ) · Lhard

(
St ( În, În+1), Ŷn

)
, (2)

where the scale parameter µ is used to balance the soft loss
Lsof t and hard loss Lhard (we empirically set µ = 0.5).
The Lsof t is used to measure the difference between the
resolution-degraded predictions of teachers and their students,
while Lhard is computed between the resolution-degraded
ground-truth maps and the student predictions. Both of the
two losses use normalized L2 loss:

Lsof t (S, T) = 1

w · h
· ‖S − R(T)‖2

2, (3)

Lhard(S, Y ) = 1

w · h
· ‖S − R(Y )‖2

2, (4)

where S and T denote the predictions of spatial/temporal stu-
dent and teacher, respectively. The w and h are the width and
height of low-resolution video frames. The distillation flow in
the first step is shown in Fig. 3, where the high-resolution
teacher knowledge is distilled into low-resolution students.
We can see that this distillation flow seeks a balance of
generalization ability and prediction accuracy. The soft labels
given by the complex teacher models pre-trained on large-scale
public or private datasets reflect a probabilistic understand-
ing of the input scenes. With the supervision of the soft
labels, the generalization ability of the student models can be



Fig. 3. Distillation flow. The spatial/temporal student networks are trained
under the supervision of hard labels as well as soft labels generated by spa-
tial/temporal teacher networks. By this way, the private knowledge inherited
in the spatial and temporal teacher networks can be transfer into the spatial
and temporal student networks.

Fig. 4. Networks. (a) Spatial student network. (b) Temporal student network.
(c) Spatiotemporal network. The spatial network takes a single frame as the
input, while the temporal network takes a pair of successive frames as the
input.

enhanced. In this way, the computational cost can be greatly
reduced without remarkable loss of accuracy.

The detail structures of students are shown in
Fig. 4 (a) and (b). The Ss is a fully convolutional
network (FCN) which takes a single low-resolution frame
În as input. Inspired by SalNet [50], Ss contains 13 layers.
Aiming at dealing the small targets in aerial videos, we use
the majority 3 × 3 convolutional kernels to enhance the local
information extraction ability. In order to gradually expand
the receptive fields, we adopt two pooling layers, in the 3rd
and 5th layers of each path, respectively. Convolutional layers
with 1×1 kernel size are adopted in the 9th layer to reduce the
dimension of the feature maps while maintaining the diversity

and effectiveness of the feature maps. A Rectified Linear
Unit (ReLU) layer is adopted after every convolutional layer
to improve feature representation capability. In this manner,
we can obtain a low-level and mid-level feature extractor with
good performance. After that, we use two convolutional layers
with kernel size 3 × 3 to extract high-level saliency cues.
In addition, we design a decoder network which contains
two deconvolutional layers to upsample feature maps and
constructs an output that maintains the original resolution of
the input.

The St has a similar structure as Ss while takes a pair of
successive low-resolution frames ( În, În+1) as input. It avoids
the heuristic, time-consuming optical flow calculation used in
traditional methods, and instead uses learnable parameters to
directly obtain the inner motion correlation between frames.
In this manner, the St can calculate the temporal saliency on a
low computational cost. In practice, we concatenate the current
frame În and the next frame În+1 to an input tensor with
the size of h × w × 6. Note that the teacher models can be
any classic deep models trained in existing public or private
datasets, and we fine-tune them on the high-resolution aerial
videos so that they can adapt to the specific visual attributes of
aerial videos such as large-scale scenarios, small targets and
vertical viewpoints.

C. Joint Spatiotemporal Knowledge Transfer

After the separate spatial and temporal knowledge dis-
tillation, the teacher knowledge has been distilled into the
corresponding students. Considering that the spatial student
takes one frame as the input while the temporal student takes a
pair of frames, there surely exist some redundancy in these two
student models, especially in the feature extraction. To further
remove such inter-model redundancy, we conduct a joint
spatiotemporal knowledge transfer step to extract compact
and powerful spatiotemporal saliency features with the desired
spatiotemporal model Sst .

The network architecture of Sst is shown in Fig. 4(c),
which has two input information streams. The spatial and
temporal input streams share the same structure as the first
eight layers of the spatial and temporal students to extract the
spatial features Fs and the temporal features Ft , respectively.
After that, these two streams are combined into a fusion
sub-network which takes a similar structure as the last four
layers to the students. The input F of the fusion sub-network
is the concatenation of Fs and Ft . In this manner, the Sst

takes the spatiotemporal consistency into consideration, which
can effectively utilize consistent features between the spatial
domain and the temporal domain to pop out foreground
regions and suppress background regions.

During training Sst , we initialize its first eight layers
with the spatial and temporal student models and the fusion
sub-network with a truncated random normal distribution.
Then the training process is performed by optimizing the
following hard spatiotemporal loss Lst :

Lst = Lhard(Sst ( În, În+1), Ŷn). (5)

The knowledge transfer process in training the desired spa-
tiotemporal model is shown in Fig. 5. We can see that the



Fig. 5. The knowledge transfer process in training the desired spatiotemporal
saliency model. The spatial and temporal knowledge learned by the spatial and
temporal student networks is transferred into the spatiotemporal network for
extracting spatial feature Fs and temporal feature Ft . Then the spatiotemporal
network fuses them for extracting powerful spatiotemporal features for better
performance.

knowledge is first transferred from the two students into the
two streams of the desired spatiotemporal model, and the
features extracted by the two streams are further fine-tuned
on low-resolution aerial videos in a fully supervised manner
to remove the redundancy in the spatial and temporal students.

In the implementation, the model adopts the Tensorflow
platform [58] on NVIDIA GPU 1080Ti and a single core
Intel CPU 3.4GHz. The learning rate and batch size are set
as 1 × 10−3 and 128, respectively. The Optimizer adopts
Adam algorithm [59]. After training, the learned spatiotempo-
ral model is deployed for processing aerial videos collected
by drones. It takes a successive low-resolution frame pair
( În, În+1) as the input. Then, the spatial stream receives În

to generate spatial features, while the temporal branch takes
( În, În+1) to output the temporal features.

IV. EXPERIMENTS

To verify the effectiveness and efficiency of the proposed
SKD approach, we conduct the experiments on a large-scale
aerial video benchmark dataset AVS1K [60] and study the
scalability of SKD on DHF1K [61]. We first introduce the
experimental settings and then benchmark with ten state-
of-the-art models. Finally, we conduct several diagnostics
experiments to give an insight analyze of SKD approach.

A. Experimental Setting

The main experiments are conducted on AVS1K [60],
a largest aerial video dataset for saliency estimation. AVS1K
contains 1, 000 aerial videos and 177, 644 frames. Its maximal
video resolution and average video length are 1280 ×720 and
5.92s, respectively. According to the salient targets, the videos
in AVS1K can be divided into four categories: Building
(AVS1K-B), Human (AVS1K-H), Vehicle (AVS1K-V) and
Others (AVS1K-O):

• AVS1K-B contains 240 aerial videos with 41, 471 frames,
and the average video length is 5.76s.

• AVS1K-H contains 210 aerial videos with 31, 699
frames, and the average video length is 5.03s.

• AVS1K-V contains 200 aerial videos with 27, 092
frames, and the average video length is 4.52s.

• AVS1K-O contains 240 aerial videos with 77, 402
frames, and the average video length is 7.37s.

Additionally, we conduct a scalability experiment on
DHF1K [61], which is the current largest ground-level video
visual attention dataset and has made a significant leap in
terms of scalability, diversity, and difficulty when compared
with conventional ground-level datasets.

To evaluate the proposed approach, we quantitatively com-
pare its performance against that of 11 state-of-the-art models
from three category groups:

1) The Heuristic Group (denoted as H Group) contains three
heuristic models, including HFT [62], SP [63] and PNSP [30].

2) The Shallow Learning Group (denoted as S Group)
contains two shallow-learning models, including SSD [7] and
LDS [38].

3) The Deep Learning Group (denoted as D Group)
contains six deep-learning models, including eDN [37],
iSEEL [64], DVA [10], SalNet [50], STS [57] and
ACLNet [61].

Based on the investigation in [65]–[67], we report quan-
titative evaluation results on five widely used evaluation
metrics, including the traditional Area Under the ROC
Curve (AUC), the shuffled AUC (sAUC), the Normalized
Scanpath Saliency (NSS), the Similarity Metric (SIM) [68]
and Correlation Coefficient (CC) [69]. AUC intuitively reflects
the classification ability of ROC curve, which is generated
by enumerating all probable thresholds of true positive rate
versus false positive rate. Different from AUC, sAUC takes the
fixations shuffled from other frames as negatives in generating
the curve. NSS measures the average response at the eye
fixation locations and normalizes the estimated saliency maps
to zero mean and unit standard deviation. In this paper,
the implementation in [70] is adopted, which efficiently com-
putes NSS via element-wise multiplication of the estimated
and ground-truth saliency maps. SIM is computed to measure
the similarity between the estimated and ground saliency maps,
while CC is computed as the linear correlation between them.
Noting that the values of all metric are positively correlated
with the model performance. However, individual metric can
not perfectly indicate whether the model is efficient or not. For
example, AUC prefers to assign high score to a saliency map
if it correctly predicts the order of saliency and less-salient
locations, even if it is fuzzy. While sAUC and NSS trend
to clean saliency maps that only pop-out the most salient
locations and suppress all the distractors. Particularly, we take
NSS as the primary metric according to the surveys on saliency
evaluation metrics [10], [71].

B. Performance Evaluation

For simplicity, we use TSNet [72] as the fixed temporal
teacher and denote our models as SKD-Ts -R where Ts is the
spatial teacher model and R indicates the input resolution. The
performance of ten state-of-the-art and our two models on the
AVS1K is presented in Tab. I. Here, SKD-DVA-32 and SKD-
DVA-64 use DVA as the spatial teacher and take the input
resolution of 32 × 32 and 64 × 64, respectively. Moreover,
the ROC Curves are given in Fig. 6. Some representative
results of these models are shown in Fig. 7.



TABLE I

PERFORMANCE COMPARISON OF 11 STATE-OF-THE-ART AND OUR TWO MODELS ON AVS1K. THE BEST AND RUNNER-UP MODELS OF EACH COLUMN
ARE MARKED WITH BOLD AND UNDERLINE, RESPECTIVELY. THE MODELS FINE-TUNED ON AVS1K ARE MARKED WITH *

Fig. 6. ROC curves of 11 models on AVS1K.

From Tab. I, we observe that both the SKD-DVA-32 and
SKD-DVA-64 are comparable to the 11 state-of-the-art mod-
els. Particularly, the SKD-DVA-64 ranks the second place
in terms of AUC, sAUC, NSS and CC, while in the third
place in term of SIM. Such performance improvement can
be attributed to the spatiotemporal distillation framework.
It distills the spatial and temporal knowledge inherited in
the teachers into students in the separate spatial/temporal
distillation step. Then the framework transfers such spatial
and temporal knowledge into a desired spatiotemporal model
and fine-tunes it for better estimation accuracy. Experimen-
tal results reveal that the SKD-DVA-64 has better repre-
sentation capability when compared with traditional single
stream networks (e.g., SalNet), classic two-stream networks
for dynamical scenarios (e.g., STS) as well as multi-stream
networks (e.g., DVA). In term of NSS, SKD-DVA-64 achieves
2.7%, 14.4% and 15.3% performance gain to DVA, SalNet
and STS, respectively. It is worth to note that the continued
decrease in resolution results in a performance attenuation

to some extent. The fly in the ointment is that the SKD
approach still underperforms ACLNet, which employ attentive
CNN-LSTM architecture and focus on learning more flexing
temporal saliency representation across successive frames.
Intuitively, the SKD-DVA-32 has a 2.9% accuracy drop to
SKD-DVA-64 in term of NSS.

We also find that the proposed approach can achieve an
ultrafast speed in aerial video saliency estimation, which
can be explained by the extremely low computational cost.
Our spatiotemporal network has only 0.30M parameters,
namely with a 98.8% reduction to DVA. Benefiting from
the combined effect of reduced parameters and input res-
olution, the computational cost and the memory footprint
of the proposed approach are compressed into a extremely
low extent. The SKD-DVA-32 and SKD-DVA-64 can achieve
421.5× and 101.7× memory reduction to DVA, respec-
tively. In summary, the SKD-DVA-32 can achieve an ultra-
fast speed (28, 738 FPS) with comparable performance to
11 state-of-the-art models, while the SKD-DVA-64 can achieve
a very fast speed (8, 522 FPS) and performs better than
SKD-DVA-32.

Additionally, we can observe the difference lies among
different categories. The heuristic models in the H group
have the poorest performance. The reason may be that these
heuristic models usually rely on low-level hand-crafted fea-
tures and predefined rules for feature fusion. Thus these
models may encounter huge challenges when infer saliency
cues in unknown scenarios. By adopting learnable fusion
strategies, the models in S group can achieve slightly better
performance but still far from satisfactory. The key issue
is that the hand-crafted features adopted in H group and S
group are designed for ground-level scenarios, which may not
be applicable to aerial videos. This also indicates that there
may exits some unconventional visual patterns in such aerial
scenarios, which should be learned from the data. Table I
reveals that the models in D group generally exceed that
of the H group and S group, which can be attributed to
the powerful capabilities of CNNs in extracting hierarchical
feature representations.



Fig. 7. Representative frames of the models on AVS1K. (a) Video frame, (b) Ground truth, (c) HFT, (d) SP, (e) PNSP, (f) SSD, (g) LDS, (h) eDN, (i) iSEEL,
(j) DVA, (k) SalNet, (l) STS, (m) SKD.

It is no doubt that the SKD-DVA-64 has an impressive
performance on the aerial dataset, which usually has abnormal
viewpoints and small targets, but there arose another concern
about its scalability to a ground-level dataset with normal
viewpoints and target scales. To validate this point, we conduct
a scalability experiment on DHF1K [61] and present its
performance in Tab. II. We find that the performance of our
model is not satisfactory, which may be caused by the fact
that our model adopts small receptive field to deal with small
targets in aerial scenarios, and such a design is hard to meet
the requirements of the normal-scale targets in ground-level
scenarios.

To follow this assumption, we present the performance
of two modified versions in Tab. II. The Modify-A gets a
slightly larger receptive field via modifying the kernel sizes
of the first two convolutional layers to 5 × 5, while the

Modify-B has an even larger receptive field since it modifies
the kernel sizes in the first two convolutional layers to 7 × 7
and 5 × 5, receptively. Obviously, the performance of the
two modified versions is comparable to the state-of-the-art
models. Particularly, the Modify-B ranks the seventh place
in term of NSS and is superior to Modify-A, which reveals
the correctness of our assumption. To sum up, the proposed
method with appropriate modification is an scalable model
that can be generalized to ground-level scenarios without
remarkable performance drop.

C. Diagnostics Experiments

After the promising performance is achieved, we further
conduct six diagnostics experiments on AVS1K to delve into
our SKD framework. In the experiments, SKD-DVA-64 is
taken as the baseline model.



TABLE II

PERFORMANCE COMPARISON OF 16 STATE-OF-THE-ART MODELS ON
DHF1K. THE BEST AND RUNNER-UP MODELS OF EACH COLUMN ARE

MARKED WITH BOLD AND UNDERLINE, RESPECTIVELY

Fig. 8. Parameter analysis on AVS1K with different µ in the interval
[0.0, 1.0].

1) Parameter Analysis: In the first experiment, we analyze
the parameter µ in (1) and (2) that is served as a scale para-
meter in computing Ls and Lt . The curve of NSS scores on
AVS1K with different µ is shown in Fig. 8, which is computed
as the mean performance value in three tests. We find that the
average NSS is relatively high (greater than 2.08) when µ falls
between [0.0, 0.6]. Particularly, the desired spatiotemporal
model achieves the best performance when the µ is set to
0.5. However, when the µ continues to grow, the performance
drops sharply. This can be interpreted as it is difficult for
soft labels to accurately represent the true distribution of data,
and the supervision of hard labels is indispensable. In other
words, the soft labels provide an opportunity to improve
the generalization ability, while the hard labels emphasize

TABLE III

PERFORMANCE OF SKD-DVA-64 ON FOUR SUBSETS OF AVS1K. THE
BEST AND RUNNER-UP MODELS OF EACH COLUMN ARE MARKED

WITH BOLD AND UNDERLINE, RESPECTIVELY

only the accuracy. When both the generalization ability and
accuracy are taken into consideration, the overall performance
on the testing set can become better.

2) Generalization Analysis: The second experiment
presents the performance of SKD-DVA-64 on four subsets to
verify its generalization, as shown in Tab. III. We can find that
SKD-DVA-64 achieves better performance on AVS1K-H and
AVS1K-V than that on AVS1K-B and AVS1K-O. The reason
arises from that the targets like human and vehicles have
appropriate sizes and conspicuous motion patterns on most
aerial videos so that the spatiotemporal feature extraction can
be easier. By contrast, AVS1K-B and AVS1K-O have relative
static or larger targets, making the saliency model difficult to
separate the targets from the distractors. This result implies
that our model can generalize the ability in estimating the
salient targets.

3) Teacher and Resolution: The third experiment aims to
assess the effect of the distilled teacher and input resolu-
tion. Without loss of generality, we fix the temporal teacher
model as TSNet, and consider three candidate spatial teachers
including DVA, SalNet and SSNet [72], that is Ts ∈ {DVA,
SalNet, SSNet}. The performance of all the teacher models
is presented in Tab. V. We find that for the spatial teachers,
the DVA ranks the first place which is followed by the SalNet,
and the SSNet is the worst. While for the temporal teacher,
the performance of the TSNet is similar to the SalNet and the
SSNet. A possible explanation for this is that the DVA has
a multi-stream structure, which allows it has stronger feature
representation ability than single stream networks (e.g., Sal-
Net, SSNet), can learn higher level semantic knowledge and
decrease the redundancy. Meanwhile, we also check four input
resolutions, having R∈ {256, 128, 64, 32}. The performance
of our different models is presented in Tab. IV, which shows
some observations. First, under the same teacher, the input
resolution has a remarkable effect on the model performance
in terms of all metrics. The best and runner-up performance are
achieved when the input resolutions are 64 × 64 and 32 × 32,
respectively. It reveals that the data redundancy could be
efficiently removed by using our framework, leading to better
performance. Second, the performance is consistent under
the same input resolution. For example, SKD-Ts -64 models
ranks top-1 no matter what spatial teacher model it adopts.
It indicates that our framework provides a general way to
distill teacher knowledge for improving saliency estimation.
Third, the results generated by the models in a low resolution
of 32 × 32 still have competitive performance. Fig. 9 shows
some representative results, where the results tend to be clearer



Fig. 9. Representative frames of the proposed model in various resolu-
tions on AVS1K. (a) Video frame, (b) Ground truth, (c) SKD-DVA-256,
(d) SKD-DVA-128, (e) SKD-DVA-64, (f) SKD-DVA-32.

TABLE IV

THE PERFORMANCE OF THE MODELS UNDER DIFFERENT SETTINGS

ON AVS1K DATASET. TS : SPATIAL TEACHER MODEL, RES: INPUT

RESOLUTION. THE BEST AND RUNNER-UP MODELS OF EACH
COLUMN IN EACH SPATIAL TEACHER SIGNAL ARE MARKED

WITH BOLD AND UNDERLINE, RESPECTIVELY

when the input resolution is reducing, which can be interpreted
as the resolution reduction can effectively remove the data
redundancy and make it easier for the networks to extract
valuable information from the data.

4) Fusion Strategy Analysis: The fourth experiment aims to
validate the effectiveness of the fusion strategy for the teacher
models. The performance of four teacher models and three
fusion models is presented in Tab. V. From this table, we find
that the performance of all three fusion models is superior to
the temporal teacher model (TSNet), but interestingly, when
compared with their corresponding spatial teacher models,
the SalNet-TSNet and SSNet-TSNet have performance gains
while the DVA-TSNet has a performance drop. This can
be interpreted as both the SalNet and SSNet have similar

TABLE V

PERFORMANCE COMPARISON OF FOUR TEACHER AND THREE FUSION
MODELS ON AVS1K. THE BEST AND RUNNER-UP MODELS OF EACH

COLUMN ARE MARKED WITH BOLD AND

UNDERLINE, RESPECTIVELY

TABLE VI

THE PERFORMANCE COMPARISONS OF THE FULL MODEL
SKD-DVA-64 AND THREE BASELINE MODELS

structures to the TSNet, the spatial and temporal knowledge
is synchronous and complementary, leads to a reasonable
performance gain in SalNet-TSNet and SSNet-TSNet.

However, for DVA-TSNet, a huge difference exists in
the backbone networks of its teachers, the learned temporal
knowledge is redundant for the learned spatial knowledge.
Even a powerful fusion sub-network cannot remove such
redundancy and extract powerful spatiotemporal features, as a
result, the DVA-TSNet has a performance drop. From this
experiment, we can empirically prove the fusion strategy
is effective for the teacher models with similar backbone
networks, but not for those backbone networks with huge
differences.

5) Ablation Analysis: The ablation analyses experiment is
conducted to illustrate the contributions of the separate compo-
nents. To this end, we further implement three ablation models.
Two ablation models (Ablation-S and Ablation-T) are gener-
ated without the joint spatiotemporal transfer to distill only
the spatial and temporal teacher knowledge, respectively. Sim-
ilarly, the ablation model Ablation-O is implemented without
the separate spatial/temporal distillation so that it can generate
the spatiotemporal saliency maps without spatial and temporal
teacher knowledge. The performance is presented in Tab. VI,
where we can find that the baseline model SKD-DVA-64
achieves the best performance while all the three ablation
models have somewhat performance degradation. A possible
explanation is that Ablation-S or Ablation-T lacks the suffi-
cient temporal or spatial information in generating aerial video
saliency maps, leading to a performance drop. In addition,
without the separate spatial/temporal distillation, Ablation-O
may have trouble in extracting powerful spatiotemporal cues,
resulting in the lowest performance.

6) Efficiency Analysis: Beyond the effectiveness, the effi-
ciency of our approach is shown in Tab. I. After the step-wisely



TABLE VII

INFERENCE TIME AND MEMORY FOOTPRINT OF OUR APPROACH ON GPU
(NVIDIA 1080Ti) AND CPU (INTEL 3.4GHz)

removing the redundancy in intra-model, data and inter-model,
the resulting model contains 0.30M parameters, leading to a
great reduction again 25.07M, 25.81M and 41.25M in DVA,
SalNet and STS. Due to this reduction in model parameters
as well as resolution, the model memory is greatly reduced,
as shown in Tab. VII. Moreover, the inference speeds of
our models in different input resolutions are all remark-
ably improved, as demonstrated in Tab. VII. The inference
runtime on the GPU platform can be reduced to 1.414ms,
0.381ms, 0.117ms and 0.035ms in the resolution of 256×256,
128 × 128, 64 × 64 and 32 × 32, respectively. In particular,
SKD-Ts -32 achieves an extremely fast speed of 28,738 FPS
and 1,490.5 FPS on the GPU and CPU platforms, respectively.
These results indicate that our approach provides a practical
solution to deploy existing complex deep saliency models on
low-end mobile devices, such as drones.

7) Limitation Analysis: Despite their comparable perfor-
mance and significant performance advantages, the proposed
models have trouble to break through their performance upper
limits, due to their limitations in design philosophy. 1) Com-
plex training process. The models are trained in a two-step
manner, which can not directly fuse the spatial and temporal
cues, resulting in a redundancy training process. 2) Limited
temporal cues. The temporal teacher adopted highly relies
on optical flow, which is computationally expensive and can
only yield the temporal cues between two frames. A cheaper
and multi-frame temporal cues extractor will contribute to
the further improvement of the final model performance.
3) Inadequate model presentation ability. The proposed spatial,
temporal and spatiotemporal models are simple models with-
out powerful presentation ability. This constrains their ability
to yield powerful features.

V. CONCLUSION

At present, most deep models for dynamic saliency esti-
mation suffer from heavy computational cost and memory
footprint, which poses a dilemma for them to be deployed
on devices with limited computational capability and mem-
ory space. To address this issue, this paper proposes a
low-resolution dynamic saliency estimation approach via spa-
tiotemporal knowledge distillation. By step-wisely removing
the intra-model, inter-model and data redundancies, a compact
and simple saliency model with impressive performance on
aerial videos can be established. Experimental results show
that the proposed approach is comparable to 11 state-of-the-
art models in estimating visual saliency on aerial videos,
while running at an extremely fast speed of 28,738 FPS and

1,490.5 FPS on the GPU and CPU platforms, respectively.
Such a performance means the model can be easily deployed
on drones.

In the future work, we will tentatively explore attention-
assisted UVA video object detection, aiming at designing
a robust detection model that can handle aerial scenes in
complex weather environment.
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