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Abstract—Primary object segmentation plays an important role in understanding videos

generated by unmanned aerial vehicles. In this paper, we propose a large-scale dataset

with 500 aerial videos andmanually annotated primary objects. To the best of our

knowledge, it is the largest dataset to date for primary object segmentation in aerial

videos. From this dataset, we findmost aerial videos contain large-scale scenes, small

primary objects as well as consistently varying scales and viewpoints. Inspired by that,

we propose a hierarchical deep cosegmentation approach that repeatedly divides a video

into two sub-videos formed by the odd and even frames, respectively. In this manner, the

primary objects shared by sub-videos can be cosegmented by training two-stream CNNs

and finally refined within the neighborhood reversible flows. Experimental results show

that our approach remarkably outperforms 17 state-of-the-art methods in segmenting

primary objects in various types of aerial videos.

& RECENTLY, UNMANNED AERIAL vehicles (drones)

have become very popular since it provides a new

way to observe and explore the world. As a result,

aerial videos generated by drones have been

growing explosively. For these videos, one of the

key tasks is to segment the primary objects, which

can be used to facilitate subsequent tasks such as

event understanding, scene reconstruction, drone

navigation, and visual tracking.
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Hundreds of models have been proposed in

the past decade to segment primary objects,15

which can be roughly divided into two catego-

ries. The first category contains image-based

models that focus on detecting salient (primary)

objects in images. In this category, classic mod-

els1–4 focus on designing rules to pop-out salient

targets and suppress distractors, while recent

models5–8 usually adopt the deep learning frame-

work due to the availability of large-scale image

datasets (e.g., the XPIE dataset).4 The second

category contains video-based models16

that aim to segment a sequence of primary/

foreground objects that consistently pop-out in

the whole video. Similar to the image-based cate-

gory, classic video-based models also design

rules to segment primary objects by jointly con-

sidering the per-frame accuracy and inter-frame

consistency.9 Recently, with the presence of

large-scale video datasets,17 several deep learn-

ing models10,11 have been proposed as well. In

addition, some video object cosegmentation

approaches12,13 have been proposed as well to

simultaneously segment a common category of

objects from two or more videos.

Generally speaking, most existing models

from the two categories can perform impres-

sively on generic images and videos taken on the

ground. However, their capability in processing

aerial videos, which often contain large-scale

scenes, small primary objects as well as consis-

tently varying scales and viewpoints, maybe not

very satisfactory (see Figure 1 for some exam-

ples). The main reasons are two-folds: 1) the heu-

ristic rules and learning frameworks may not

perfectly fit the characteristics of aerial videos,

and 2) there is a lack of large-scale aerial video

datasets for model training and benchmarking.

Toward this end, this paper proposes a large-

scale dataset APD with 500 aerial videos (76, 221

frames). Based on the types of primary objects,

these videos can be divided into five subsets,

including humans, buildings, vehicles, boats, and

others. From these videos, 5014 frames are

sparsely sampled, in which the primary objects

are manually annotated (see Figure 2 for repre-

sentative frames and their ground-truthmasks).

Based on the aerial video dataset APD, we

propose a hierarchical deep cosegmentation

approach for segmenting primary objects in

aerial videos. In our approach, we first divide

a long aerial video into two subvideos formed

by the odd and even frames, respectively. By

repeatedly conducting such temporal slicing

operations to the subvideos, a long video can be

represented by a set of hierarchically organized

subvideos. As a result, the object segmentation

problem in a long aerial video can be resolved

by hierarchically cosegmenting the objects

shared by much shorter subvideos. By learning

end-to-end CNNs for cosegmenting two frames, a

mask can be initialized for each frame by coseg-

menting frames from subvideos that have

the same parent node in the hierarchy. These

masks are then refined within the neighborhood

reversible flows so that the primary video

objects can consistently pop-out in the video.

Experimental results show that our approach is

efficient and outperforms 17 state-of-the-art

models, including 7 image-based nondeep mod-

els, 5 image-based deep models, and 5 video-

based models. The results also show that APD

is a very challenging dataset for existing object

segmentation models.

The contributions are summarized as follows:

1) we propose a largest aerial video dataset for

primary object segmentation, which can be used

to further investigate the problem of primary

video object segmentation from a completely

new perspective; 2) we propose a deep

Figure 1. Representative challenging scenarios in aerial videos.

(a) Large-scale scenes, (b) small primary objects, (c) scale

variation, (d) viewpoint variation. We also demonstrate the results

of state-of-the-art models, including DHSNet,6 DSS,7 FST,9 NRF,11

and our approach (denoted as HDC).
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cosegmentation approach that can efficiently

and accurately segment primary objects in aerial

videos; 3) we provide a benchmark of our

approach and massive state-of-the-art models on

the proposed dataset.

APD: AN AERIAL SALIENCY DATASET
Towards primary object segmentation in

aerial videos, we construct a large-scale dataset

for model training and benchmarking, denoted as

APD. In constructing the dataset, we first collect

2402 long aerial videos (107 hours in total) shared

on the Internet. Then, we manually divide long

videos into 52 712 shots and remove shots that

are unlikely to be taken by drones or contain no

obvious primary objects (determined through

voting by three volunteers). After that, we obtain

21 395 video clips, from which we randomly

sample 500 clips for the subsequent annotation

process. According to the types of primary

objects, these videos are further divided into five

subsets, as shown in Table 1.

From these videos, we uniformly sample only

one keyframe out of every 15 frames and manu-

ally annotate the 5090 keyframes. In the annota-

tion process, each annotator is requested to first

watch the videos to obtain an initial impression

of what are the primary video objects. Based on

the impression, they then annotate the primary

objects in the sparsely sampled keyframes

with polygons. After that, the annotation quality

of each frame is independently assessed by

another two subjects. Flawed annotations are

then corrected by the three annotators through

majority voting, while frames with confusing

annotations are discarded. Finally, we obtain

5014 binary masks that indicate the location of

primary video objects in keyframes.

Table 1. Dataset statistics. #Type: shooting from Ground or Aerial. #Max-F, #Min-F: the max and min numbers of

frames. #Annot: the number of annotated frames. #Avg-Obj: the average number of objects per video or image.

#Avg-Area: the average area of primary objects per video or image.

Figure 2. Frames and ground-truth masks from APD. (a) APD-Human (95 videos), (b) APD-Building

(121 videos), (c) APD-Vehicle (56 videos), (d) APD-Boat (180 videos) and (e) APD-Other (48 videos).
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To demonstrate the major characteristics of

APD, we show the statistics of APD and its sub-

sets in Table 1. In addition, to facilitate the differ-

ence between APD and previous datasets, we

also show the information of three representa-

tive datasets with ground-level videos for pri-

mary or salient object segmentation, including

SegTrack V2,13 ViSal14 and VOS10 and a represen-

tative image dataset for object segmentation

named MS COCO.18 As shown in Table 1, the pri-

mary objects in APD are remarkably smaller

than that in previous datasets. Such small

objects will make the segmentation task of pri-

mary objects very difficult. Considering that

there already exist many approaches for the

detection, segmentation, and recognition of

humans and vehicles, the APD dataset provides

an opportunity to find out a way that can trans-

fer ground-level knowledge of humans and

vehicles to aerial videos. Moreover, the number

of videos in APD are larger than previous data-

sets, making ADP more diversity. In this sense, it

is possible to directly train video-based deep

learning models on APD with less risk of over-

fitting.

Beyond the quantitative statistics, we also

show the average annotation maps of APD and

its subsets in Figure 3. An average annotation

map is computed by resizing all annotated

masks to the same resolution and normalizing

the map to a maximum value of 1. From

Figure 3, we find that the distribution of pri-

mary objects also has a strong center-bias ten-

dency, implying that many rules and models

for generic primary/salient object segmenta-

tion can be reused for segmenting primary

objects in aerial videos (e.g., the boundary

prior).2 Moreover, the degrees of center-bias in

the five subsets differ from each other, indicat-

ing that there may exist several different ways

to optimally segment primary objects in aerial

videos if their semantic attributes are known

or predictable.

HIERARCHICAL DEEP
COSEGMENTATION OF PRIMARY
VIDEO OBJECTS

The segmentation task of primary objects in

videos is to consistently pop-out the same pri-

mary object throughout the video. While the

challenges of large-scale scenes, small objects

and consistently varying scales and viewpoints

make this task in aerial videos very challenging.

Fortunately, we find that most primary objects

last for a long period in the majority of aerial

video sequences, which may be caused by

the fact that aerial videos usually have less or

slower cameramotions andwider viewing angles.

Inspired by this fact, we propose a novel

approach for primary object segmentation in

aerial videos by turning a complex task to several

simple ones. The framework of our approach is

shown in Figure 4, which consists of three major

stages: 1) hierarchical temporal slicing of aerial

videos, 2) mask initialization via video object

cosegmentation and 3) mask refinement within

neighborhood reversible flows. Details of these

three stages are described as follows.

Hierarchical Video Slicing

In the first stage, we divide a long aerial video

into two subvideos formed by the odd and even

frames, respectively. In this manner, the content

similarity between these two subvideos can be

maximally guaranteed. By repeatedly conducting

the odd-even slicing operations to all subvideos,

a hierarchy of short video clips can be efficiently

constructed. Assuming that primary objects last

for at least N frames in an aerial video, we can

build a tree structure with a depth of blog 2Nc
and 2blog 2Nc nodes. Here, we empirically set N ¼
max (32, video length). The short video clip at

each leaf node has at least one frame that con-

tains the primary objects. As a result, primary

objects in the original video can be segmented

by solving a set of simpler tasks: hierarchically

cosegmenting the objects shared by massive

much shorter video clips.

Figure 3. Average annotation maps of APD and its

five subsets.
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Mask Initialization

In the second stage, we aim to initialize a mask

of primary objects for each video frame by hierar-

chically cosegmenting the objects shared by the

2blog 2Nc short video clips at leaf nodes. To speed

up this process, the cosegmentation is conducted

only between two subvideos that have the same

parent node. Let A ¼ fAi; i ¼ 1; . . . ; jAjg and B ¼
fBj; j ¼ 1; . . . ; jBjg be two short video clips, where

jAj and jBj denote the numbers of frames inA and

B, respectively. For these two short videos, we

assume that there exists a model fðAi;BjÞ that

can segment the objects shared by the ith frame

ofA and the jth frame of B:

f Ai;Bj

� � ¼ MAijBj
;MBjjAi

n o
(1)

whereMAijBj
is a probability map for the frame Ai

that depicts the objects shared with the frame Bj.

By cosegmenting all frame pairs between A and B,

the mask of primary objects for a frame Ai can be

initialized as the per-pixel average of all such

cosegmentation results with respect to all frames

from B:

MAi
¼ 1

Bj j
X Bj j

j¼1
MAijBj

: (2)

From the map produced by (2), we find that a

frame is actually cosegmented with multiple

nonadjacent frames with increasing temporal

distances. The advantages of such cosegmenta-

tion between far-away frames are at least four-

folds: first, far-away frames can provide more

useful cues of the primary objects in the coseg-

mentation process than adjacent frames that are

full of redundant visual stimuli. In other words,

far-away frames form a global picture of what is

the primary video object. Second, most coseg-

mentation operations can pop-out primary

objects since they appear in a large portion of

video frames. As a result, primary objects can be

repeatedly enhanced through the additive fusion

in (2). Third, the hierarchical framework ensures

that each frame can be cosegmented with at

least one frame with the same primary objects.

Last but not least, the computational cost of

cosegmenting frame pairs from two short videos

is remarkably smaller than that from two long

videos so that the efficiency of the proposed

approach can be improved.

In practice, the model fðAi;BjÞ can be set to

any cosegmentation algorithms. Here, we train

two-stream fully convolutional neural networks,

denoted as CoSegNet, to conduct such coseg-

mentation. As shown in Figure 5, CoSegNet takes

two frames as the input and two probability

maps as the output. Features from the two

frames are extracted with two separate streams,

which are initialized with the architecture and

parameters of the first several layers of ResNet-

50. After that, the output features of these two

streams are concatenated and fused into a

shared trunk for extracting the common features

of the two frames. Then, the network splits into

Figure 4. Framework of our approach.
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two separate branches that predict a probability

map of shared objects for each input frame.

Note that a skip connection from each input

stream to the corresponding output branch is

also used to regularize the generation of each

probability map by introducing frame-specific

low-level features.

For a pair of frames Ii and Ij with ground-truth

masks Gi and Gj, we train CoSegNet by simulta-

neously minimizing two losses LðMIijIj ; GiÞ and

LðMIjjIi ; GjÞ, where Lð�Þ is the cross-entropy loss.

We resize all input frames and output predictions

to the resolution of 320� 320. The learning rate is

set to 1� 10-8 at the first 10 epochs and 2� 10-9 in

subsequent iterations. A batch size of four frame

pairs is adopted in training the network. The opti-

mization algorithm is set to SGD, the gamma

value is set to 0.2 and themomentum is set to 0.9.

In training CoSegNet, we utilize two types of

data, including 1) synthetic data generated by

randomly cropping a pair of 320 � 320 patches

from an image with manually annotated salient

objects (we use the same training images of11

that are overwhelmed by ground-level scenar-

ios), and 2) realistic data generated by randomly

sampling pairs of annotated key-frames from the

training set of APD. In this way, CoSegNet trained

only on synthetic data is used as a baselinemodel

to justify the effectiveness of our hierarchical

deep cosegmentation framework, while CoSegNet

trained on both synthetic and realistic data is

used to give the state-of-the-art performance.

Mask Refinement

After cosegmenting two short videos A and B,

each frame obtains an initial object mask

represented by a probability map. Recall that

the subvideos A and B under the same parent

node are generated by the odd and even frames

of a longer subvideo C ¼ fC1; C2; . . . ; CjCjg, we

assume each frame Cu is initialized with a proba-

bility mapMCu .

To enhance inter-frame consistency and cor-

rect probable errors in MCu , a key challenge is to

derive reliable inter-frame correspondences.

Considering that frames in the subvideo C may

be actually far away from each other in the origi-

nal video, the pixel-based optical flow may fail to

handle large pixel displacement. To address this

problem, we construct neighborhood reversible

flows11 based on superpixels. We first divide two

frames Cu and Cv intoNu andNv superpixels that

are denoted by fOuig and fOvjg, respectively.

Similar to the paper by Li et al.,11 we compute the

pair-wise ‘1 distances between superpixels from

fOuig and fOvjg, where a superpixel is repre-

sented by its average RGB, Lab and HSV colors

as well as the horizontal and vertical positions.

Suppose that Oui and Ovj reside in the k nearest

neighbors of each other, they are k-nearest neigh-

borhood reversible with the correspondence

measured by

fui;vj ¼ exp �2k=sð Þ k � s

0 otherwise

�
(3)

where s is a constant empirically set to 15 to sup-

press the weak inter-frame correlations. Such

superpixel-based inter-frame correspondence

between Cu and Cv is denoted as the neighbor-

hood reversible flow Fu;v 2 RNu�Nv , in which the

component at ði; jÞ equals fui;vj. Note that we

further normalize Fu;v so that each row sums up

Figure 5. Network architecture of CoSegNet. The a� a, b inside each Conv block indicates kernel size a and

kernel number b, while the�c below each Conv blockmeans c sequential convolution layers in the Conv block.
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to 1. Based on such flows, we refine the initial

mask MCu according its correlations with other

frames. To speed up the refinement, we only refer

to the previous mask MCu�1
and subsequent mask

MCuþ1
. We first turn the pixel-based map MCu to a

vectorized superpixel-based map xu by averaging

the scores of all pixels inside each superpixel.

After that, the score in xu is updated as

x̂u ¼ xu þ �p � Fu;u�1xu�1 þ �s � Fu;uþ1xuþ1

1þ �p þ �s
(4)

where �p ¼ �s ¼ 0:5 are two constants to balance

the influence of previous and subsequent frames.

After the temporal propagation, we turn super-

pixel-based scores into pixel-based ones as

bMCu pð Þ ¼
XNu

i¼1
d p 2 Ouið Þ � x̂ui (5)

where bMCuðpÞ is the refined probability map of the

frame Cu that depicts the presence of primary

objects at the pixel p. dðp 2 OuiÞ is an indicator

function which equals 1 if p 2 Oui and 0 other-

wise. x̂ui is the component in x̂u that corresponds

to the superpixel Oui. An adaptive threshold

0:2�maxf bMCuðpÞ; 8p 2 Cug is then used to seg-

ment the primary objects in the frame Cu.

EXPERIMENTS
In the experiments, we compare our

approach HDC with 17 state-of-the-art models

on APD and VOS to demonstrate 1) the key chal-

lenges in APD, and 2) the effectiveness of the

HDC. The models to be compared with can be

divided into three groups:

1. The [IþN] group contains 7 image-based non-

deep models, including DSR,15 MBþ,11

GMR,15 SMD,1 RBD,2 HDCT,3 and ELEþ.4

2. The [IþD] group contains 5 image-based

deep models, including RFCN,11 DCL,5

DHSNet,6 DSS,7 and FSN.8

3. The [V] group contains 5 video-based models,

including FST,9 SSA,10 NRF,11MSG,12 andRMC.15

In the comparisons, we divide APD into three

subsets: 50% for training, 25% for validation, and

25% for testing. The validation set is only used

for parameter-finetuning and cannot be used to

provide additional training data. On the testing

subset with 125 videos, we evaluate the model

performance with two metrics, including the

mean Interaction-over-Union (mIoU) and the

weighted F-Measure (wFM). The mIoU score is

computed following the way proposed in VOS,10

which first computes the IoU score at each frame

and then step-wisely average them on each video

and thewhole dataset. The thresholds for turning

probabilitymaps into binarymasks are set to 20%

of the maximal probability scores, as suggested

in NRF.11 Similarly, wFM is computed to assess

the segmentation performance by jointly consid-

ering the completeness and exactness.

To show the challenges of APD, we list the

model performance in Table 2 before fine-tuning

them on APD.We find that APD is very challenging

for most existing models. On this dataset, HDC

outperforms the other models. The image-based

nondeep models perform far from perfect, espe-

cially on the APD-Human subset since the primary

objects cover only 1.5% area of the video frames

on average. Most image-based deep models out-

performnondeep ones, indicating that the learned

features are more robust than heuristic rules

when the application scenarios are transferred

from ground-based to aerial. Moreover, NRF

Table 2. Performance benchmark of HDC and state-of-the-art models before being fine-tuned on VOS and APD.

The first two models are marked with bold and underline, respectively.
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achieves impressive performance scores that are

much higher than SSA and FST. This implies that

the CNNs learned on ground-level image datasets

can be partially reused in aerial videos, while

the predictions can be further refined by using the

inter-frame correspondences. Furthermore, the

performances of some models, such as NRF and

DHSNet, have different ranks in terms of mIoU and

wFM. This phenomenon may imply that mIoU

and wFM are two metrics that reveal the model

performance from two different perspectives.

Therefore, we suggest using both metrics for

model evaluation onAPD.

To verify the generalization ability, we also

test the models on VOS. From Table 2, we found

that the performance of HDC is still the best,

making it a scalable model that can be general-

ized to other scenarios.

Besides, for proving the efficiency of HDC, we

test on the platform with a 3.4 G-Hz CPU (single

core) and a NVIDIA GTX 1080 GPU (without batch

processing). Note that we down-sample all videos

to 320 � 320 for the fair comparison of various

models in the speed test. As a result, we find

that our approach takes only 0.73 s to process a

frame, which is much faster than almost all video-

based models. Besides, the speed of HDC is com-

parable to many deep learning based models,

such as RFCN and DSS. The high efficiency of our

approach makes it possible to be used in some

real-world applications.

Beyond the direct performance comparisons,

we fine-tune our HDC model and the other three

top-performed deep models, DSS, NRF, and

DHSNet, on the training and validation sets of

our APD dataset. The performance scores of

the fine-tuned models (marked with�) are shown

in Table 3. Some representative results of HDC�
are shown in Figure 6.

From Table 3, we find that HDC� still performs

much better than the other three deep models

after all models are fine-tuned on APD. Although

NRF DSS and DHSNet can learn some useful clues,

they cannot deal with many aerial videos prop-

erly that the primary object is very small,

especially these small objects are not always

salient in all Frames. On the contrary, HDC� well

resolves the problem from the perspective of

Table 3. Performance comparison of HDC and the top three models after being fine-tuned on APD. The first two

models are marked with bold and underline, respectively.

Figure 6. Representative results of HDC� on APD.
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cosegmentation. Even when the scene contains

rich content and small-sized primary objects, the

hierarchical cosegmentation framework can

enforce HDC� to learn the features from the

objects shared by a pair frames, leading to higher

performance than single frame-based deep

models.

To validate the effectiveness of the odd-even

temporal slicing framework, we test HDC� again

by hierarchically dividing the testing videos

into the same number of subvideos formed by

consecutive frames other than the even and

odd frames. Note that the same HDC� model

pretrained on the training set of APD is used for

cosegmentation. In the case, the mIoU of HDC�
decreases from 0.672 to 0.660, and the wFM

decreases from 0.758 to 0.748, implying the odd-

even slicing framework provides better frame

pairs for cosegmentation.

In addition, we analyze the performance of

HDC on APD before refinement to verify the

influence of the refinement stage. We find that

the mIOU and wFM drop to 0.563 and 0.639,

respectively, which still achieve the highest per-

formance compared with other previous meth-

ods. While due to the neighborhood reversible

flow constructed in the mask refinement stage,

we could further enhance inter-frame consis-

tency and correct probable errors effectively.

Another concern may be the complexity and

rationality of the hierarchical temporal slicing

framework. By dividing testing videos into the

depth 2, 3, 4, 5, and 6, we find that a deeper hierar-

chy leads to almost stable performancebut remark-

ably lower complexity. For a videowith 181 frames,

the cosegmentation times are 785 K, 379 K, 177 K,

76 K, and 25 K when the depth is set to 2, 3, 4, 5,

and 6. Inmost experiments, we adopt a depth of 5.

CONCLUSION
This paper proposes a dataset, which is cur-

rently the largest, for primary object segmenta-

tion in aerial videos. We believe this dataset will

be helpful for the development of video object

segmentation techniques. Based on the dataset,

we propose a hierarchical deep cosegmentation

approach for primary video segmentation in aerial

videos. The segmentation task is converted to a

set of cosegmentation tasks that are easier to be

resolved. Experimental results show that the

proposed dataset is very challenging and the pro-

posed approach outperforms 17 state-of-the-art

models.

In the future work, wewill try to explore the dif-

ference between the visual patterns extracted

from ground-based and aerial videos so as to facili-

tate the design of better models for primary video

object segmentation. In addition, the probability

of constructing CNNs that can directly cosegment

two short videoswill be explored aswell.
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