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Abstract

The state-of-the-art models for visual attention predic-
tion perform well in common images. But in general, these
models have a performance degradation when applied to
another domain with conspicuous data distribution differ-
ences, such as solar images in this work. To address this is-
sue and adopt these models from the common images to the
sun, this paper proposes a new dataset, named VASUN, that
records the free-viewing human attention on solar images.
Based on this dataset, we propose a new cross-domain mod-
el adaption approach, which is a siamese feature extraction
network with two discriminators and trained in a one-shot
learning manner, to bridge the gaps between the source do-
main and target domain through the joint distribution space.
Finally, we benchmark existing models as well as our work
on VASUN and give some analysis about predicting visu-
al attention on the sun. The results show that our method
achieves state-of-the-art performance with only one labeled
image in the target domain and contributes to the domain
adaption task.

1. Introduction

Visual attention prediction, which simulated the human
vision system to quickly pay attention to parts of the image
instead of the whole scene pin its entirety, has received in-
creasing attention in the past two decades, e.g., bio-inspired
attention models [15, 12, 35], shallow learning model-
s [18, 19], and deep learning models [20, 14, 26, 28, 32].
These models have been shown to perform very well when
tested on the common data related to the training data (what
we call the source domain), but their performance drop-
s dramatically when applied them to abnormal data (e.g.,
solar images). The challenge is that the distribution of the
source domain and the target domain are very different. We
will approach this challenge by investigating how a com-
mon representation between the source domain and the tar-
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Figure 1. Representative results of visual at-
tention models on common images and solar
images.

get domain can map the two domains to have similar distri-
butions, enabling effective domain adaption.

Although existing state-of-the-art models have effective
domain adaption among these common image sence, it is
questionable whether these models have an aptitude for
memorizing certain features and intermediate representa-
tions related to common images, or they have strong gen-
eralization ability. Intuitively, as shown in Fig. 1, these
models perform well on conventional datasets but not on a
solar dataset. In order to investigate how a common repre-
sentation between the source domain and the target domain
can make the two domains appear to have similar distribu-
tions, we firstly propose a new visual attention dataset, the
images of which are provided by the LSDO dataset [21].
Based on this dataset, we propose weakly supervised do-
main adaption with one-shot GAN to address this problem.

We also benchmark the performance of 16 visual atten-
tion models as well as our method over the new dataset by
using five representative evaluation metrics. The bench-
mark results show that our model achieves state-of-the-art
performance only by introducing one labeled image in tar-
get domain to the network.

Our contributions are summarized as follows: 1) We pro-
pose novel visual attention dataset covering 1070 solar im-
ages. To the best of our knowledge, the proposed dataset is



Table 1. The subject number and image res-
olution of representative image datasets and
our VASUN dataset. #lmg and #Sub mean the
number of images and subjects in the dataset.

Dataset | #lmg  #Sub.  Max Res.
MIT300 [17] 300 39 1024 x 1024
MIT1003 [18] 1003 15 1024 x 1024
Toronto [3] 120 20 511x681
CAT2000 [2] 2000 18 1920x 1080
SALICON [16] | 15000 - 640x480
PASCAL-S [25] 850 8 500x500
DUT-0 [33] 5168 5 401 x401
VASUN 1070 16 1024 x 1024

4 1 VAR R
. k ¥ i 7 Sy ) n
AR s 1 ST 4 3
f | . e
% e B id
\ ¢ f ~7 S v

Figure 2. Representative examples from VA-
SUN. Red dots in the second row indicate the
recorded fixation points, which are used to
generate the ground-truth attention maps in
the third row.

the first eye-tracking dataset for the solar attention predic-
tion.2) We propose a novel cross-domain model adaption
network, which consists of a siamese feature extraction net-
work and two generative adversarial networks and trained in
a one-shot learning manner. 3) We present a comprehensive
analysis of an extensive benchmark and the results give a
positive evaluation about our cross-domain visual attention
model adaption.

2 The VASUN Dataset

Many attention benchmark datasets have been proposed
in the literature. Among these datasets, some of them
are specifically designed for studying the human fixation
prediction problem of more than a dozen subjects in the
free-viewing conditions (e.g., MIT300 [17], MIT1003 [18],
Toronto [3] and CAT2000 [2]), while the rest ones just
record fixations of several subjects to facilitate subsequen-
t annotations (e.g., Pascal-S [25], and DUT-O [33]). The
number of subjects and their image resolutions of these

MIT1003 TORONTO CAT2000

PASCAL-S

SALICON VASUN
Figure 3. The average attention maps of vari-
ous datasets.

datasets can be found in Tab. 1.

To measure the generalization ability and to make the
attention prediction results in more valued for application,
we construct a dataset that contains new visual patterns in
solar images. Toward this end, we refer to the solar im-
ages in LSDO dataset [21]. Neither such solar images nor
their visual patterns have appeared in any existing image at-
tention datasets. From the LSDO dataset, we construct a
new image attention dataset to study visual attention on the
sun (denoted as VASUN). We adopt a similar setting with
MIT1003, the most widely used dataset with daily scenar-
ios. That is, we sample 1070 images taken at the wavelength
171A from LSDO and down-sample them to the resolution
of 1024 x1024. On these images, we record the visual atten-
tion of 16 subjects in eye-tracking experiments. These 16
subjects (10 males and 6 females) have normal or correct-
to-normal visions. None of them has prior knowledge of
astronomy and solar physics to avoid subjective bias.

Some representative examples of the recorded fixation-
s and ground-truth attention maps can be found in Fig. 2.
From this figure, we can see that most human visual atten-
tion is allocated to large active regions, making the visu-
al attention prediction task on solar images a theoretically
simple task. In addition, we also compare the average at-
tention maps of VASUN with previous datasets in Fig. 3.
We can see that the distribution of fixations in VASUN is
quite different from previous datasets with daily scenarios.
This may be caused by the solar images have no photog-
rapher bias that tend to place the target at image centers.
This phenomena further validates that VASUN can be used
to test the generalization ability of visual attention models.
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Figure 4. The network architectures of our proposed model. Given a pair of images (zx;, z;), target
stream F network extracts features f,, and transforms them to source F network hierarchically.
Generator G maps the embedding z(,, z;, to the attention maps for target image and source image
respectively. Then D network discriminates the maps real or not. MSE supervisor is applied to make
sure the correctness of prediction in source path. Note that the F, G, and D share weights in the

siamese paths.
3 Model Adaption with One-shot GAN
3.1 Problem Description

Before discussing the details of our proposed method,
we firstly describe the problem to solve. Let X = {z;} ;,
Y. = {y;}}¥, be the input images and their corresponding
labels in source domain space. While the X; = {z;}},,
Y; = {y:} M, represent the input images and labels in target
domain space. Y = Y, UY; = {yl}f\ggM refers to the joint
labels of source and target domain. The best adapted model
H(z) can be formulated as

H(z) = MFs(z)+(1=X)-Fy(z), A = { é:i 2 §: M

where F; and F} represent the mapping relation between in-
put images and their labels in the source domain and target
domain, respectively. The parameter A is used to balance
Fy and F;. In the one-shot learning for domain adaption
manner, since we only have one labeled data from X, de-
noted as (g, o), it is difficult to learn the function F} for
the target domain. However, the mapping F; can access the
source distribution using labeled data from X. As a result,
the problem can be stated as learning a predictor that is op-
timal in the joint distribution space by using labeled source
data and one sample labeled data from the target domain.
We change the data organization mode from separated Xj,
X, into X = {(z;,20)} Y, where the (z;, 7o) means a pair
of images. Let R; be the common representation. Then
our goal is to learn an embedding map F' : X — R, and a
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Figure 5. The network architectures of
siamese F network.

prediction function G : Ry — Y. Both F' and G are deep
neural networks. As a result, during the training process,
F use the features extracted from the source domain and
the representative image of target domain to predict atten-
tion maps on the source domain, which helps F' reduce the
domain shift between the distributions of source and target
domain. The (1) can be modified as

H(x) =GA-F(z;))+(1=X)-F(xo)),z = (z4,%0), (2)
where balance parameter A is learnable.

Several Previous works have provided ways to trans-
fer information between the source and target distribution-
s, including learning entropy-based metrics [27], learning
a domain classifier based on an embedding network [8] or
denoising autoencoders [10]. In this work, we propose a
GAN-based approach to bridge the gaps between the source
domain and the target domain.



Algorithm 1 Iterative training procedure of our approach

1: training iterations = N

2: for each i € [1, N] do

3:  Given a pair of images (x;, 2o) and labels(y;, yo);
Let f; = F(x;) be the source embedding;

Let fo = F(x0) be the target embedding;

Sample k random noise samples{z;}*_, € N(0,1);
Let x4, 204 be the concatenated input to generator;
Update discriminator D with following objectives:

® DNk

k
— max L D(as) 1-D(G(iy))
LD—mgX%Z;log + log
A = 3
1
+E Z logD(xO) + 1Og1*D(G(I0g))

i=1

9:  Update generator G, loss comes from strong supervi-
sor and discriminator:

k
o1
L¢ :mén T Z ||G(9Cig) - yz”%
o 4)
1 1-D(G(zi)) 1-D(G(zo4))
+r glog 9/ +log .

10:  Updating embedding network F' using strong super-
visor loss and a linear combination of the adversarial

loss:
1 k
. N 2
Lr —m};n T z_; ||G($zg) vill2
k
) | 5)
+E Z alogl—D(G(%g))
i=1
48 logl—D(G(mog))
11: end for

3.2 Proposed Approach

In this work, we propose a Cross-domain Model Adap-
tipon with one-shot GAN for Attention prediction, denoted
as CMA-GAN, which utilizes a variant of the typical GAN
to adapt the attention prediction model from daily scenarios
to solar image domain. The overall structure of our network
is given by Fig. 4 and detailed siamese F network is illus-
trated in Fig. 5. We will describe the model in details next:

The network F' directly extract features from the input
image pairs (zs,0), and then the input of the generator
network G can be represented as x, = [A-F(z5)+(1—A)-
F(x0), 2], which is a combination of the features extracted
from the source domain input z;, target domain input x
and a random noise vector z € Ry sampled from N(0,1).

We employ a decoder network G as the generator which
takes the embedding generated from F' as input and pro-
duce the attention map as its output G(z). Then G(z) is
delivered to the discriminator to judge the probability that =
belongs to its domain distribution. In order to make the F’
and G correctly predict the attention on daily scenario im-
ages, we also use the strong supervised manner (MSE loss
in this paper) with labels in Y.

We take coupled discriminators to judge the probability
that the input image pair(z, zo) are real or not, which re-
ferred as D(x) and D(xg), respectively. In order to avoid
over-fitting, these two discriminators share wights in train-
ing. Since we have known the label for xg, D(xs) and
D(x) are both used to back-propagate the gradients. How-
ever they have different weights in different stage. To joint-
ly learn the embedding and the generator-discriminator pair,
we optimize the G, F, G as the Alg. 1:

From Alg. 1, we can see that the discriminator network
are optimized by minimizing two cross binary loss L s
and Lg; ; which come from D(z,) and D(zy), respectively.
Then the generator networks are optimized with adversarial
loss and the strong supervisor MSE loss. Feature extrac-
tion networks are updated in the same way as the generator.
However, we set different weights for two adversarial loss-
es with « = 0.2, 8 = 0.8 to give the embedding extracted
from the target images higher priority to make sure a better
concatenation between thep source and target distribution.
As for Fig. 5, we show the transformation of features be-
tween siamese F network in detail. In addition, we take all
the key factors, which are big kernels in low layers, appro-
priate depth of network and multi-scale input (three scales
of the image in our model) analyzed in the previous experi-
ment into consideration.

4 Experiment

4.1 Training and Testing

Our experiments are conducted with the pyforch tool-
box. During the training phase, the learning rate is set
to 1073. To verify the effectiveness of our approach,
we design another three control models for ablation study,
which are Resnet50-backbone with source only, Resnet50-
backbone with one-shot learning, L-inception Resnet50-
backbone with source only, respectively. We organized s-
tudy by carrying out these experiments as follow phases:

We reorganize the dataset SALICON with our VASUN
to train these control models from scratch. For the train-
ing of source only model, we keep the original structure of
SALICON which has 10,000 training images. While for the
training of the one-shot model, we first select one labeled
solar image. To improve the performance of proposed ap-
proach, We reconciled the following two constraints: the
number of events on the face of the selected image should



Table 2. Performance of models in different
phase on VASUN-testing. The best models of
each column are marked with bold.

Model | AUC sAUC NSS SIM CC

res50-source 0.856 0.717 1263 0.486 0.540
res50-oneshot | 0.896 0.741 1.451 0.570 0.622
Ires50-source | 0.879 0.736 1.311 0.537 0.562
CMA-GAN 0.899 0.775 1.585 0.598 0.675
human 1.000 0.900 2.347 0988 1.000

be as much as possible; the distance between ground truth
map of the selected image and other maps should be short
as much as possible. Then we organize the SALICON and
the selected image as one-shot training dataset.

Then we train these control models and our network on
the same platform in order. For the source only models,
which are a typical encoder-decoder network, we train them
on the SALICON training dataset end verify them with sev-
eral solar images to gain their best performance. While for
the one-shot models, including our approach, we train them
on the one-shot training dataset and verify them on the same
solar images to make sure they have learned the features in
sun and are in the best condition.

After training, all models are changed into the testing
structure and initialized with parameters obtained in train-
ing phase. The we evaluate them on the same testing set of
VASUN. The performance is presented in Tab. 2.

From Tab. 2, we can see that res50-source has the worst
performance which can be attributed to its simple archi-
tecture and single training manner. In contrast, the res50-
oneshot has obvious performance improvements, increas-
ing from 1.263 to 1.451, which results in a gain of 14.89%
in NSS score. We can safely conclude that our proposed
idea does work on the task of cross-domain attention mod-
el adaption. While the comparison between res50-source
and Ires50-source shows that the key factors we utilize to
enhance the feature extract network also contribute to the
improvement of the model’s performance. Finally, we can
see that our approach which integrates all the advantages
discussed in this paper result in the best performance of
visual attention prediction on the sun. To further evaluate
our work’s performance, we generate a new attention mod-
el benchmark based on our VASUN.

4.2 Model Benchmark

Many typical works have been proposed in the last few
decades since attention prediction is a classic computer vi-
sion task. In this section, we refer to many famous or latest
method and benchmark them on the VASUN to measure
their generalization ability and evaluate the performance of
our approach.

Table 3. Benchmark of 17 models with default
parameters. The best models of each column
are marked with bold, the best models of each
group and each column are marked with a
underline.

Models | AUC sAUC NSS SIM CC
SUN [35] 0.844 0.664 1.135 0.443 0.488
BMS [34] 0.838 0.717 1.333 0.500 0.569

o COVIs] 0.792 0.679 1.139 0.378 0.487
= GBVS [12] 0.821 0.673 1.146 0.431 0.489
CAS [11] 0.893 0.722 1372 0.515 0.584
AWS [9] 0.871 0.743 1.474 0.537 0.629
HFT [23] 0.887 0.749 1.528 0.522 0.653
ICL [13] 0.874 0.767 1564 0.556 0.665
SSD [22] 0.787 0.651 1.342 0.398 0.427
ZLDS [7] 0.860 0.734 1.553 0.571 0.656
FES [30] 0.759 0.658 1.066 0.447 0.448
eDN [31] 0.837 0.698 1.078 0.378 0.464
iSEEL [29] 0.841 0.648 0.987 0.451 0.425
= SalNet [28] 0.877 0.729 1.361 0.512 0.580
SALICON [14] [0.857 0.705 1.400 0.537 0.592
SAM-ResNet [4] [ 0.894 0.743 1.408 0.533 0.599
CMA-GAN 0.899 0.775 1.585 0.598 0.675

Over all the attention models, we benchmark 16 visual
attention models from them, which can be roughly divided
into three groups: 1) the BIO group contains seven bio-
inspired models, including SUN [35], BMS [34], COV [5],
GBVS [12], CAS [11], HFT [23] and AWS [9]; 2) the SL
group contains five shallow learning models, including I-
CL [13], SP [24], SSD [22], LDS [7] and FES [30]; 3) the
DL group contains five deep learning models, including eD-
N [31],iSEEL [29], SalNet [28], SALICON [14] and SAM-
ResNet [4]. All these models have public source code on the
Internet, and we use their default parameters to generate the
attention maps. The predictions of these models are evalu-
ated using five metrics, including AUC, sAUC, NSS, SIM
and CC. The performance is presented in Tab. 3.

From Tab. 3, we find that in previous works, deep atten-
tion models on daily scenario images outperform shallow
learning models and bio-inspired models. The key issue
here is that the hand-craft features designed for daily sce-
narios may be not suitable for solar images and the deep
attention models still cannot represent the target domain
knowledge without re-training or fine-tuning. However, af-
ter introducing our idea which uses the generative adversar-
ial network with one-shot learning manner, the performance
of the attention model trained mainly by the daily scenario
images shows obvious improvement in terms of all evalua-
tion metrics.



5 Conclusions

In this paper, we revisit the problem of visual attention
prediction from a novel perspective: the adaption of exist-
ing deep attention models. We propose a new dataset of so-
lar images and a new approach to achieve the cross-domain
attention model adaption with one-shot GAN under the cir-
cumstances that the target domain cannot provide enough
labeled images to re-train the network. In addition, we hope
our work can arise other researchers’ interests in solar im-
ages and provide a feasible approach for cross-domain at-
tention model adaption.
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