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Abstract— To efficiently browse long surveillance videos,
the video synopsis technique is often used to rearrange tubes
(i.e., tracks of moving objects) along the temporal axis to form
a much shorter video. In this process, two key issues need to
be addressed, i.e., the minimization of spatial tube collision and
the maximization of temporal video condensation. In addition,
when a surveillance video comes as a stream, an online algorithm
with the capability of dynamically rearranging tubes is also
required. Toward this end, this paper proposes a novel graph-
based tube rearrangement approach for online video synopsis.
The relationships among tubes are modeled with a dynamic
graph, whose nodes (i.e., object masks of tubes) and edges
(i.e., relationships) can be progressively inserted and updated.
Based on this graph, we propose a dynamic graph coloring
algorithm to efficiently rearrange all tubes by determining when
they should appear. Extensive experimental results show that our
approach can condense online surveillance video streams in real
time with less tube collision and high compact ratio.

Index Terms— Streaming video synopsis, surveillance, tube
rearrangement, dynamic graph coloring.

I. INTRODUCTION

AS reported by the IDC’s Data Age 2025 Study [1],
the amount of data generated worldwide is

16.1 zettabytes in 2016, and the global datasphere will
grow to 163 zettabytes in 2025. A large portion of these
data is image and video content [2]–[4], especially for non-
entertainment purposes such as video surveillance. Actually,
surveillance video is growing up to the biggest big data all
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over the world [5]. To make better use of the long surveillance
videos, a straightforward way is to group them into categories
and reduce their amount and duration. Toward this end, many
techniques have been invented for video classification [6], [7],
abstraction [8], [9], montage [10], [11], condensation [12], [13]
and synopsis [14], [15]. Among these techniques, video
synopsis has attracted much attention in recent years, which
aims to condensate a long surveillance video into a much
shorter clip by modeling the background [16] as well as
extracting [17], [18], rearranging [19], [20] and stitching [21]
tubes.

In the past decade, dozens of video synopsis approaches
have been proposed, which can be roughly grouped into the
offline and online categories. The offline category assumes
that the video is static and its condensation is performed
when the attributes of all tubes are available. For example,
Pritch et al. [14] formulated the tube rearrangement as a
global Gibbs energy-minimization problem. Nie et al. [20]
enabled the movement of tubes in both temporal and spatial
subspaces. Although these approaches have achieved impres-
sive synopsis effects, they are not suitable for online surveil-
lance systems. In addition, the computational cost of these
approaches can be very high since they usually save the
complete spatio-temporal information of all tubes and then
rearrange them via time-consuming optimization.

To address these problems, online video synopsis
approaches were proposed to divide a large tube set into
smaller sub-sets [15] or process them one-by-one [22].
For example, He et al. [15] found out a new pattern to
describe the relationship between tubes. They modeled the
sub-sets of tubes as several Potential Collision Graphs (PCGs)
and then applied an offline graph coloring algorithm to process
the graph. Feng et al. [23] and Zhu et al. [22] proposed a Tetris
based real-time method, which treated tubes as Tetrominos
and maintained a buffer to cache a certain number of tubes.
However, such greedy framework often leads to local optimal
condensation since arrangement of previous tubes have been
fixed and the information of newly coming tubes are not
involved. Therefore, it is necessary to develop an online
approach that can dynamically rearrange previous tubes based
on the newly coming tubes.

Toward this end, this paper proposes a novel graph-based
tube rearrangement approach for online video synopsis, where
the relationships of tubes are modeled with a dynamic graph.
Different from previous works, the dynamic graph can be pro-
gressively updated along with the video streaming. Based on
this graph, a dynamic graph coloring algorithm is proposed
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Fig. 1. The demonstration of our tube rearranging method. It is worth noticing
that the time locations of previously rearranged tubes 1 and 2 are updated after
inserting new tube 3.

to efficiently re-assign the time location of tubes so as to
minimize the spatial collision and maximize the condensation
rate. The key idea is illustrated in Fig. 1. When a complete
tube (i.e., a complete trajectory of an object) is extracted
and added into a buffer of tubes, the adding and adjusting
procedures assign the new tube to a time location and the
time locations of previously rearranged tubes are also updated
so as to make rearrangement better. In our work, the cached
tubes are modeled by a dynamic graph, and the updating
procedure is treated as vertex inserting and dynamic graph
coloring operations. Experimental results show that the pro-
posed approach can generate impressive condensation results
for online surveillance video streams in real time.

The main contributions of this paper are summarized as
follows: 1) we propose a graph model that can dynamically
describe the tubes and their relationships in streaming videos;
2) we propose a dynamic graph coloring algorithm that can
efficiently rearrange tubes with low spatial collision and high
condensation rate; and 3) we develop a system that can be
deployed for online video synopsis, whose effectiveness has
been validated in extensive experiments.

II. RELATED WORK

In this section, we introduce three categories of techniques
that are closely related to video synopsis, including 1) video
abstraction, 2) video montage and ribbon carving-based con-
densation, and 3) video synopsis.

A. Video Abstraction

Video abstraction [24] is a relatively early solution that
generates a summary of long video by keeping crucial video
frames. Typically, there are two kinds of video abstraction
approaches: video summary and video skimming. Video sum-
mary approaches [25]–[27] generated static storyboards by
selecting several discrete frames from the original video.
On the contrary, video skimming approaches [28]–[30] pre-
served more dynamic information by selecting representative
clips with continuous video frames. Generally speaking, video
abstraction can significantly condensate long video, but some
interesting objects may be removed together with discarded
frames or clips.

B. Video Montage and Ribbon Carving-Based Condensation

To preserve the most informative foreground objects in con-
densed video, the video montage technique was proposed [10],
which separated the input video into several space-time por-
tions and fused these segments into a shorter video according
to the informative content (e.g., human actions). In this man-
ner, rich video information can be compressed into a narrower
video space. Nevertheless, this algorithm is very complex
and may bring obvious seams caused by portion fusion.
To address these issues, Li et al. [12] proposed to iteratively
remove structures called ribbon with the help of dynamic
programming so as to avoid removing a whole frame once.
Nguyen et al. [13] improved this method by using a three-
stage condensation scheme to preserve the chronological order,
which achieved a more proper way to deal with a relatively
long video. While Ribbon carving-based video condensation
is simple and fast, they usually have low condensation rate
and noticeable seams in synopsis videos.

C. Video Synopsis

A trade-off technique between the video montage
and ribbon carving-based video condensation is video
synopsis [14], [31]–[34]. Video synopsis aims at not only
achieving high condensation rate but also providing much
more natural experiences for human browsing. In the video
synopsis approaches, tube rearranging is a key step to reduce
the length of the final compressed video and the collisions
among foreground objects. In traditional methods, the tube
rearranging problem is usually solved by using some off-line
optimization algorithms. For example, Pritch et al. [14], [35]
built a Markov Random Field model over the tubes, and
formulated the tube rearranging as a Gibbs energy minimiza-
tion problem. Li et al. [36] scaled down the objects when
collisions occurred in the tube rearranging phase, and proposed
an adaptive way to find the proper zoom-out coefficients to
further reduce collision cost. Nie et al. [20] proposed to move
tubes in both temporal and spatial subspaces so as to achieve
both high compression and low spatial collision. In most cases,
the offline methods can produce impressive synopsis results.
However, they are often time-consuming and not suitable for
some online scenarios.

In order to solve this problem and achieve synopsis results
in real-time, some online methods [22], [23], [37], [38] have
been proposed to speed up the tube rearranging procedure.
For example, Feng et al. [23] proposed a Tetris-based real
time method for tube rearranging, which treated tubes as
Tetrominos and maintained a tube buffer that would be cleared
when the tube number touches the upper bound. Zhu et al. [22]
further improved this method with multi-threading and GPU
support. He et al. [38] discovered a new pattern to describe
the relationship between tubes as a Potential Collision Graph.
By applying a simple greedy method to process the graph,
tubes can be rearranged rapidly. Furthermore, He et al. [15]
proposed an off-line graph coloring-based method to better use
the Potential Collision Graph to rearrange tubes. Similar con-
straints are also employed in online video synopsis methods
in [22] and [23].



Fig. 2. An example of activity collision.

To sum up, most efforts in existing video synopsis works
are spent on the offline tube rearrangement, while some
researchers start to notice the problem of online video synopsis
that will be helpful to process the overwhelming surveillance
videos. In such online synopsis researches, a key issue is to
rearrange dynamically formed tubes in real time, which is also
the major concern of this study.

III. PROBLEM FORMULATION

Video synopsis aims at condensing a long video into a
much shorter one by rearranging the essential tubes along
the temporal axis. In this process, three key factors should
be considered, including:

A. Tube Collision

Tubes rearranged to the same time interval may overlap with
each other, which may result in poor visualization experience.
As shown in Fig. 2, two persons running along the green
and red lines collide in the second and third frames, leading
to severe occlusion. Such kind of tube collision should be
minimized in video synopsis.

B. Activity Completeness

Missing key activities in video synopsis will lead to serious
consequences in video surveillance. Therefore, the complete-
ness of every single tube needs to be maximized in video
synopsis, i.e., the object masks in all frames and the pixels
they cover should be preserved as much as possible.

C. Interaction Preservation

In surveillance videos, the interaction between objects
(e.g., conversation) needs to be detected and preserved as much
as possible in tube rearrangement phase.

In practice, the activity completeness can be maximized
by forming tubes without discarding any object even when
the activity lasts an extremely long period. The interaction
between objects can be preserved by fusing multiple objects,
once interacted at a specific time, into a single tube (e.g., two
persons ever embraced are fused into a single tube). Therefore,
the major factor we need to take into account is the tube
collision. With this key factor in mind, we state the problem

of video synopsis as follows. Let V = {Fk}K
k=1 be a streaming

video with K frames already played and T = {Tm}M
m=1 be the

set of M tubes contained in V. Here, Fk is the kth frame of
V and Tm is the mth tube formed by a set of chronological
masks:

Tm = {{Omn}Nm
n=1, tm}, (1)

where Omn is the nth spatial mask of the object with identified
label m. Here, a spatial mask Omn is represented by a set of
pixels covering the object in a specific frame. The positive
integer tm indicates the temporal position of the first spatial
mask Om1 in V, and Nm is the length of the tube Tm

(i.e., the number of frames containing the object). By assuming
that the object appears in consecutive frames, the temporal
location of the i th object mask Omi can be computed as
tm + i − 1.

In video synopsis, the primary objective is to derive a new
start temporal location t̂m for each tube Tm so that it forms a
new tube T̂m in the condensed video with

T̂m = {{Omn}Nm
n=1, t̂m)}. (2)

As a result, the synopsis process of V can be formulated as
the minimization problem

{t̂∗m} = arg min
{t̂m }

K̂ + λ ·
M∑

u=1

M∑

v=u+1

�(T̂u, T̂v ),

where t̂m ∈ {1, . . . , K̂ − Nm + 1},∀m,

max({t̂m + Nm − 1|∀m}) = K̂ ,

min({t̂m |∀m}) = 1 and K̂ ≤ K , (3)

where K̂ is the number of frames in the condensed video.
The term �(·) penalizes the probable collision between two
tubes, which can be defined as

�(T̂u, T̂v ) =
Nu∑

i=1

Nv∑

j=1

δ(t̂u + i = t̂v + j) · φ(Oui , Ov j ) (4)

where δ(e) is an indicator function that equals 1 if the event
e holds and 0 otherwise. The term φ(Oui , Ov j ) indicates the
spatial collision loss when the object Oui from the uth tube
and the object Ov j from the vth tube appear in the same frame
of the condensed video. Such a loss can be defined according
to the ratio of spatial overlapping between the two objects.
For efficient video condensation, we set φ(Oui , Ov j ) to 1 if
Oui and Ov j have any degree of overlapping in spatial location
and 0 otherwise.

By incorporating Eq. (4) into Eq. (3), we can see that
video synopsis aims to minimize the length of condensed
video while preserving the visibility of tubes (i.e., minimal
collision). For off-line approaches, the tubes are formed before
the optimization process so that the optimization problem
can be effectively resolved. However, in the online scenario,
the tubes are dynamically formed, while the spatial masks and
length of tubes will change from time to time. In this case,
an early tube may be placed at inappropriate time positions
without knowing what and how many tubes may come in
subsequent video streams. Therefore, we propose to develop



an online approach that can dynamically rearrange all tubes
in the buffered video streams.

IV. A DYNAMIC GRAPH COLORING APPROACH FOR

ONLINE VIDEO SYNOPSIS

The graph coloring problem is one of the most classic
problems in graph theory. Given a graph G = {V , E} with a
set of vertices V and a set of edges E , the objective of graph
coloring in our scenario is to assign a limited number of time
locations (colors) to the spatial masks (vertices) in tubes under
certain constraints (edges) [39], [40]. In this section, we will
introduce a dynamic graph coloring approach to rearrange the
tubes formed dynamically from steaming video.

A. Overview of Online Video Synopsis

For surveillance video streams, a key challenge in resolving
the optimization problem (3) is that the tube number and
tube relationships are updated from time to time. As a result,
the penalty term �(T̂u, T̂v ) should be defined in an easy-
to-resolve form to handle the dynamic tubes. Toward this
end, we first represent the tubes and their relationships as
a graph that is easy to perceive and understand. Therefore,
we directly abstract a spatial object mask Omn in a tube Tm as
a vertex and model the relationship between two spatial object
masks meeting certain constraints as an edge. For the sake of
simplicity, we denote a vertex with the same symbol Omn .

In video synopsis, two relationship constraints between
object masks, i.e., collision constraint and chronological con-
sistency constraint between two spatial object masks, are taken
into account. These two constraints are modeled by two types
of edges. The first type of edges Eu is undirected, which
conveys the spatial collision between two spatial masks in
different tubes. That is, if φ(Oui , Ov j ) = 1 and u �= v,
they are connected by an undirected edge. The second type
of edges Ed is directed, which is employed to encode the
chronological order of spacial masks in the same tube. Given
any two contiguous spatial masks Oui and Ou j , j = i + 1 in
the same tube Tu , there exist a directed edge from Oui to Ou j .
Note that two spatial object masks that fail to meet such
relationship constraints will have no connection. An example
of the graph constructed from two tubes can be found in Fig. 3.

Once a graph is constructed, we use a graph coloring algo-
rithm to assign the minimal number of colors to graph vertices,
while such colors, represented by integers, can be viewed
as the time locations of spatial object masks. Two vertices
connected by an undirected edge should be assigned to differ-
ent colors (i.e., time locations), while vertices connected by
directed edges should be assigned consecutive colors. Instead
of constructing the graph once, the dynamic graph coloring
constructs the graph incrementally to ensure efficient optimiza-
tion, and the assigned colors to previous vertices can be further
re-colored according to the optimization result after taking into
account new coming vertices. Therefore, the dynamic graph
coloring process can be viewed as a stepwise optimization
problem on a sequence of graphs G = {G(t)}M

t=1.
In order to obtain real-time synopsis, we perform the graph

coloring with two strategies. First, we reduce the maximum

Fig. 3. An example of the graph constructed to describe the relationships of
object masks in two tubes. T1 = {{O1n}3

n=1, t1} and T2 = {{O2n}4
n=1, t2} are

two tubes. The vertices O11,O12, and O13 in tube T1 are connected by two
directed edges. In addition, O21 collides with O13 if they are rearranged into
the same frame in the synopsis video. Therefore, we connect them with an
undirected edge. Similarly, O23 and O12 are also connected by an undirected
edge.

number of vertices in G(t) so as to speed up the optimization.
Second, we assume that G(t) and G(t + 1) are quite alike so
that the optimal solution for G(t) can be treated as the initial
solution for G(t + 1) that is nearly optimal. With these two
strategies in mind, we set an upper bound P for the number of
tubes and update only one tube once. That is, after the number
of tubes in G(t) gets up to P , a tube will be selected and fused
into synopsis video when a new tube Tt+1 is coming. Note that
a long tube will surely influence the computational cost of a
synopsis video. However, we do not make any limitation on
the length of a tube. Given a long tube, we can uniformly
divide it into several shorter ones and then use methods like
sticky tracking [22] to group them into a single tube.

Fig. 4 illustrates the overview of the proposed
approach. Giving a streaming video, tubes are extracted
and fed into the dynamic graph one by one in chronological
order. When the number of tubes in G(t) reaches up to P ,
a colored tube is selected and moved to synopsis video.
Then, the new coming tube Tt+1 is added to the G(t),
and the graph is updated to form a new graph G(t + 1).
The iterative process is continued until all the tubes are
extracted and moved to synopsis video.

B. Updating of Dynamic Graph

Intuitively, we can update the synopsis result after receiving
every new tube from the streaming video. However, dynamic
graph coloring is an NP-hard problem, even if we limit the
number of vertices in G(t) and make G(t) and G(t + 1) be
quite alike. Therefore, it is necessary to find an approximate
solution to achieve a good balance between effectiveness and
efficiency. In this section, we propose an efficient algorithm to
update the graph G(t). A detailed description of the updating
procedure can be found in Algorithm 1. Noting that coloring a
tube Tm is equivalent to assign a time location to its first spatial
object mask Om1. To make description more clear, we denote
gc(Omn) as the color (time location) that has been assigned
to Omn , and gc(Tm) is interchangeable to gc(Om1).

When a new tube Tt+1 is coming, it is added into the
graph G(t) in different strategies, i.e., adding procedure



Fig. 4. Overview of the proposed online video synopsis based on dynamic graph coloring with P = 3.

and adjusting procedure. For the first one, we employ the
greedy algorithm, which is shown in procedure adding(·)
in algorithm 1. The key idea is to make a statistic for Tt+1
on all possible collisions occurred with the vertices {Omn} in
G(t) at any colors (time locations) that are feasible to color
the O(t+1)1. After that, we can obtain the minimum feasible
color, at which the number of collisions is zero or below to
a pre-defined tolerance. In particular, given a colored graph
G(t), we record the number of collisions at each time location
in a big array NC[·]. Here, the index of NC[·] denotes
the time location, and NC[ctmp] means the total number of
collisions with vertices in G(t) if Tt+1 is rearranged to the
time location ctmp . When O(t+1)i ∈ Tt+1 has spatial overlap
with Omn ∈ V (t) and O(t+1)i is assigned to the same color
gc(Omn), there exists a collision. Since the color of gc(Tt+1)
can be inferred from gc(Omn)−i+1, a collision is accumulated
for Tt+1 at the time location ctmp. In this way, the collisions
occurred among spatial object masks are converted to the
collisions at all possible starting time locations assigned to the
tube. Once we have collected the array NC[·], we need to find
the minimum available color to color Tt+1, i.e., coloring(·)
procedure.

If we want to avoid all the collisions, gc(Tt+1) will be the
minimum index x of NC[·], which satisfies both x � cmin

and NC[x] = 0. Here, cmin is the minimum available color
currently, which is updated dynamically by the starting time
location of removed tube. However, the proper solution is too
strict for the video synopsis scenario. Generally speaking, it is
allowable to tolerate a certain degree of collisions so as to
get more compactly compressed video. Therefore, we pre-
define a nonnegative constant h to balance the collision and
compressed performance. Here, h indicates the number of
continuous frames having spatial collision for two tubes in
synopsis video. Once we pre-define the tolerance of collision
to be h, we can color the new tube Tt+1 with the minimum fea-
sible color x , which satisfies both x � cmin and NC[x] � h.

As indicated in the adding(·) procedure, only the new
coming tube is colored, and the others keep no change.
Although this strategy makes full use of colored results of
G(t) and leads to efficient dynamic graph coloring, it also
improves the probability of bad result. The best way is to
employ a greedy algorithm to renew all the tubes in G(t + 1).
However, it is time-consuming, and real-time performance will
be sacrificed. Therefore, we introduce an alternative strategy
to give a chance for obtaining better results as well as keeping
real-time performance. We call it ad justing(·) procedure. The
key idea is to directly set the color of new tube T j to the
minimum available color cmin . Then, all the colored {Tm}
that have collisions with T j are removed from G(t). Finally,
the removed tubes are re-added to G(t) to form G(t + 1)
by using the adding(.) procedure. Both the adding(·) and
ad justing(·) procedures can treated as individual approximate
solutions. In the updating procedure, we select the better one
from them. Since the objective is to minimize the length of the
condensed video, we select the G(t + 1) that have minimum
ending time location as the better one. In algorithm 1, EC(·)
denotes the set of ending time locations of all tubes in
condensed video, and max{·} is the maximum value in the set.
In fact, it is reasonable and straightforward, since the earlier
ending time means shorter length of synopsis video.

C. Implementation Details of the Proposed Approach

The proposed online video synopsis approach consists
of three main components that focus on the extraction,
rearrangement and stitching of tubes, respectively. In order
to extract tubes from videos, we first employ a fast and
robust method, ViBe [18], to extract the foreground pixels
from the raw frame, followed by a background modeling
procedure. Here we use the mean value of received frames to
build the background. After that, the sticky tracking algorithm
proposed in [22] is employed to perform interaction-preserved
object tracking. The object masks generated by the tracking



Algorithm 1 Updating the Graph

procedure are stored in a cache pool, and a complete tube
(object mask sequence) for the object is obtained if no new
object mask is detected in a short period (e.g., 2 seconds). The
complete tubes are fed into the algorithm 2 to perform dynamic
rearrangement. Finally, the tubes removed from dynamic graph
are stitched with the background to generate a short video clip.
In our work, Poisson Editing [21] is employed for stitching.

The pipe line of tube rearrangement is shown in algorithm 2.
Formally, given a set of tubes T = {Tm}M

m=1 in chronological
order, these tubes are added dynamically into graph G(t) one
by one by using the updating(.) procedure. Once the number

TABLE I

PROPERTIES OF 12 SURVEILLANCE VIDEOS

Algorithm 2 Complete Pipeline

of tubes in G(t) gets up to the limitation P . A tube will be
selected and moved into synopsis video before adding the new
coming tube Tt+1. In the proposed framework, the tube that
has the minimum ending time location is selected, and the
minimum available color cmin is updated to the maximum one
in old cmin and the time location of the tube to be removed.
In this way, the time locations below to cmin will be not
assigned, which will minimize both the collisions and the
length of synopsis video.

V. EXPERIMENTS

To validate the effectiveness of the proposed approach,
we conduct extensive experiments on surveillance videos
collected with diverse scenes and interactions.

A. Experiment Settings

In experiments, we collect 12 long videos for performance
testing, whose properties are listed in Tab. I. These videos
cover different surveillance scenarios and diverse object move-
ment patterns, as illustrated in Fig. 5.

Based on these videos, we compare our approach with five
state-of-the-art video synopsis methods, including three online
methods (MAP-VS [41], HPVC [22] and FastPCG [38]) and
two offline methods (OVSb [14] and PCGCb [15]). Among
these methods, MAP-VS is based on fixed tube rearranging
strategies, HPVC adopts energy minimization and content-
aware tube filling, and FastPCG is based on graph oper-
ation. In particular, to ensure that the offline methods can



Fig. 5. Testing scenarios. (a) Highway, (b) Overpass, (c) Yard, (d) Sidewalk, (e) Playground, (f) Road, (g) Square, (h) Crossroad.

obtain online synopsis results from surveillance video streams,
we equally divide the original video into b ∈ {1, 2, 4, 8}
batches for offline methods OVSb [14] and PCGCb.
The original offline results can be obtained at b = 1.

In the comparisons, we employ the commonly used evalu-
ation metrics in previous works [38], [41], including

1) Frame Condensation Ratio (FR): is a temporal metric
computed as the ratio between the numbers of frames in the
synopsis video and the original video. A small FR means a
higher condensation rate.

2) Frame Compact Ratio (CR): is a spatial metric that
measures how the spatial space in a synopsis video is occupied
by various objects. It can be computed as the ratio between the
numbers of object pixels and total pixels in a synopsis video.

3) Non-Overlapping Ratio (NOR): measures the degree of
collision among tubes in a synopsis video, which can be
computed as the ratio between the number of pixels occupied
by all objects and the sum of pixels of each individual object
mask. A higher NOR score means less collision, and a perfect
synopsis video without any tube collision will lead to a NOR
score of 1.

4) Chronological Disorder (CD): measures the quantities
of tube pairs (Ta , Tb) that Ta appears earlier than Tb in the
original video but opposite in the synopsis video. It can be
computed as the ratio between the number of reversed tube
pairs and the total number of tubes. A higher CD means a
more serious break of chronological order.

To make fair comparisons with these four metrics, we fix
the frame condensation ratio (FR) and compare the scores of
the other three metrics when using the same tube extraction

Fig. 6. Effects of two parameters in our approach on the video “Highway”.
The performance scores are normalized to [0, 1] for clear visualization.

algorithm for all methods. In addition, we re-implement and
compare all these methods with a single-thread and run them
on a C++ platform with a 3.5GHz CPU and 16GB memory.

B. Parameter Analysis

In the proposed method, there are two key parameters,
i.e., h and P . The parameter h indicates the number of frames
that two tubes have spatial collision in a synopsis video,
and P is the upper bound of the maximum tube number in
a dynamic graph. In order to evaluate the effect of these two
parameters, we conduct experiments on the video “Highway.”
As shown in the left side of Fig. 6, the FR score will remark-
ably reduce when h increases, indicating higher condensation
rates. This is caused by the fact that a higher value of h
can tolerate more spatial collisions. In contrast, the CR score
will significantly increase since a higher condensation rate
greatly reduces the total number of pixels in a synopsis video.
Meanwhile, NOR decreases with an increasing h, indicating



TABLE II

COMPARISON OF FRAME COMPACT RATIO WHEN THE FRAME CONDENSATION RATIO IS FIXED

TABLE III

COMPARISON OF NON-OVERLAPPING RATIO WHEN THE FRAME CONDENSATION RATIO IS FIXED

a higher collision. Interestingly, NOR decreases much slower
than other metrics, implying that the proposed method can
avoid severe collision even if the condensation rate is very
high. Similarly, the effects of changing P is opposite to those
of h, which is reasonable because increasing P will introduce
more tubes into the rearrangement optimization process and
thus incorporate more global information. In this manner,
the collision becomes less so that NOR and FR increases and
CR decreases.

C. Model Comparison With Fixed FR

In our experiments, we fix the FR score of synopsis
videos generated by different methods so as to fairly com-
pare the performances in terms of CR and NOR. The pre-
defined FR for each video is determined by the output of
MAP-VS method, since MAP-VS cannot generate synopsis
videos with arbitrary FR. To obtain the same FR scores for
all the other methods, we empirically tune the parameters
h and P for each approach on each video. For all the methods
used in our experiments except OVS that can automatically
determine the FR, we use grid search to find the desired values
of their parameters. The experimental results of CR and NOR
are listed in Tabs. II and III, respectively. Some represen-
tative synopsis results can be found in Fig. 7, and more
synopsis video clips can be found in the following website:
http://mic.bjtu.edu.cn/project/video_synopsis/.

From Tabs. II and III, the proposed online video synopsis
framework remarkably outperforms all the previous online
video synopsis methods, i.e., MAP-VS, HPVC and FastPCG.
In particular, the NOR score of our approach reaches up to
0.9896, implying that the synopsis videos generated by our
approach, no matter which types of scenarios, have almost
no tube collisions. As shown in Fig. 7, the objects appeared
at different time intervals are rearranged into the same time
interval by our approach. For example, three groups of people
occurred at different time locations in original Square-2 video
appear in the same time period in the synopsis video (see the
left column of Fig. 7). In addition, the proposed method has the
capability to cluster tubes with similar trajectories, as shown
in groups 1, 2 and 3 in Playground (the middle column of
Fig. 7). Furthermore, our approach can effectively preserve
the interactions among objects appeared at the same time in
the original video. As shown in the right column of Fig. 7,
the groups 1 and 2, which both contain several subjects in the
original Road-1 video, can be well preserved as groups with
fixed spatial and temporal relationships in the synopsis video.

One main reason is that our approach makes full use of
context information of tubes to be rearranged. For most of
the previous methods, the optimal time location reassigned
to a tube is dependent only on previously rearranged tubes,
while the information of future tubes is not taken into account.
In addition, once the tube is rearranged, its time location



Fig. 7. Representative synopsis results of our approach. The first three rows, from top to bottom, show the representative frames in video streams. The last
row demonstrates the synopsis results on Square-2, Playground and Road-1.

is never changed, leading to unsatisfactory synopsis results.
Actually, when there comes more tubes, it is often necessary
to rearrange previous tubes to more proper time locations
so as to obtain a better synopsis effect. In contrast, our
approach employs a dynamic graph to keep a certain number
of previously rearranged tubes. For each tube in the dynamic
graph, its time location is iteratively updated when a new
tube is added into the graph. The updating procedure for the
tube is continued until it is removed from the dynamic graph.
In this way, the previously rearranged tubes get a chance
to be rearranged to better time locations, leading to better
CR and NOR performance. An exception for these previous
online methods is HPVC, in which the information for future
tubes is also considered by part previously rearranged tubes.
However, this method selects only one previously rearranged
tube for updating time locations. By using Roulette Wheel
Selection algorithm, its solution reaches the local optimization
and fail to make full use of the context information. We use
the CD metric [41] to experimentally support the above
conclusion. Experimental results are listed in Tab. IV. We find

that our approach obtains the highest CD values in almost all
testing videos. The main reason is that the context before and
after a certain tube can be fully explored. In this way, tubes
can be rearranged to better time locations, leading to better
CR and NOR scores. Meanwhile, the optimal time locations
for better CR and NOR may result in a more serious break of
the chronological order among tubes. In fact, video synopsis is
just a technique that can break the chronological order to get
a much compact video for the purpose of efficient indexing
and browsing long surveillance videos.

In addition, we find that our online approach outperforms
the offline methods that use different batch sizes (b = 1
indicates that the offline approaches actually conduct global
optimization on the entire video). For example, the overall
performance of our approach reaches a CR of 0.1559 and a
NOR of 0.9896, while such scores of OVSb=1 reach only
0.1344 and 0.9404, respectively. The main reason is that
our proposed method explicitly provides a mechanism for
detecting spatial collisions at the frame level. In the proposed
method, each object in various tubes is modeled as a vertex in



Fig. 8. The non-overlapping ratio (NOR) with different frame condensation ratios (FR) on two representative videos.

TABLE IV

PERFORMANCE COMPARISONS OF CHRONOLOGICAL DISORDER
SCORES BETWEEN ONLINE METHODS

the dynamic graph, and the relationship of spatial collisions
among objects in different tubes is modeled as the undirected
edges. In this way, all the potential collisions are taken into
account at the frame level, which, theoretically, can avoid all
probable collisions. In contrast, the traditional offline methods
evaluate the collisions at tube level, while OVS also partially
involves the collisions among frames when computing the

energy. Therefore, the proposed method can achieve better
performance in terms of CR and NOR.

Moreover, we can see that a larger batch size b for OVS
and PCGC leads to worse CR and NOR in most videos. It is
consistent with the intuitive expectation since batch processing
will break the global optimization problem into several local
optimization sub-problems instead. Some exceptions of such
phenomenon can be found in Playground and Road-1, which
is caused by the fact that these videos have much more
tubes. When directly processing so many tubes, the global
optimization may lead to unsatisfactory results within a finite
number of iterations (e.g., the Simulated Annealing process
used in OVS). By breaking the large optimization problem into
several smaller sub-problems, the optimization process can be
conducted to reach several better local optimums instead of
an imperfect global optimum, leading to better results.

D. Model Comparison With Flexible Condensation Ratio

From the results reported in Tabs. II and III, we also find
an interesting phenomenon that CR and NOR are tightly
correlated with each other. That is, a higher CR is often
accompanied by a larger NOR, and vice versa. This phenom-
enon is consistent with the intuitive impression that a synopsis
video with less tube collision can make better use of the
spatial space, leading to higher CR. Therefore, we focus on the



TABLE V

COMPARISON OF TIME COST IN TERMS OF FRAMES PER SECOND (FPS)

NOR scores in subsequent experiments that compare various
models with flexible condensation ratios. The experiments are
conducted on two videos (i.e., Overpass and Playground) that
our approach performs the best (with the highest NOR score)
and worst (with the lowest NOR rank) in previous experiments.
Note that MAP-VS is not compared here since it cannot
adjusts the condensation ratio.

In the experiment, we specify several FRs and observe how
the NOR changes. As shown in Fig. 8, our approach achieves
stable and outstanding performance for both videos even when
the FR is flexible. For example, our approach achieves high
non-overlapping ratio even when the original video is highly
condensed (i.e., a small F R = 0.12). This result means
that our proposed method can better rearrange tubes to avoid
collisions in long and short synopsis videos. Even when the
video is highly compressed into a very short clip, our method
can still preserve most informative cues of objects.

E. Analysis of Time Complexity

From Algorithm 1 and Algorithm 2, we can observe that the
main time cost lies in both adding and ad justing procedures.
Once the U pdating operation is executed, it invokes above
two procedures separately. For adding procedure, we should
loop through all the vertices representing the spatial masks
of the given tube Tt+1, all the undirected edges of each
vertex are visited to construct the NC[·]. Therefore, the total
time is O(Nt+1 ∗ NE (t+1)). Here, NE (t+1) means the average
neighbors of each vertex in Tt+1. For ad justing procedure,
the core operations include the adding and Queue operations.
In worst case, the size of Queue is P −1. So time complexity
in worst case is O(

∑P−1
x=1 Nx ∗ NE x ).

To quantitatively evaluate the time complexity, we list the
time cost of the tube rearrangement phase for all methods in
Tab. V. We can see that the offline methods and most of their
invariants are far inferior to the online methods. However, our
method is slower than all online baselines including HPVC.
Nevertheless, it still achieves real-time performance, since its
slowest rearranging speed is 55 FPS that is greater than the
frame ratio of a standard real-time video.

VI. CONCLUSIONS

In this paper, we investigate how to use dynamic strategy
to make the synopsis video more compact, and keep as much

information as possible in the meanwhile. To explore the
problem in a quantitative manner, we develop a novel tube
rearranging algorithm based on online dynamic graph coloring,
and explicitly formulate a new relationship between moving
objects in the input video to help the rearrangement process.
Unlike traditional online tube rearranging methods, we will
adjust some already placed tubes, and formulate the tube
rearranging problem as a dynamic graph coloring problem in
the classical graph theory field, and every frame of objects
is abstracted into a corresponding graph vertex. Furthermore,
to preserve the interactive information between tubes, we stick
the tubes which have intersection in the original video. After
qualitative and quantitative analysis, we find that our algorithm
exhibits greater advantage than five state-of-the-art methods on
almost all of the video data.
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