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Model-guided Multi-path Knowledge Aggregation
for Aerial Saliency Prediction

Kui Fu, Jia Li, Senior Member, IEEE, Yu Zhang, Hongze Shen and Yonghong Tian, Senior Member, IEEE

Abstract—As an emerging vision platform, a drone can look
from many abnormal viewpoints which brings many new chal-
lenges into the classic vision task of video saliency prediction.
To investigate these challenges, this paper proposes a large-
scale video dataset for aerial saliency prediction, which consists
of ground-truth salient object regions of 1,000 aerial videos,
annotated by 24 subjects. To the best of our knowledge, it is
the first large-scale video dataset that focuses on visual saliency
prediction on drones. Based on this dataset, we propose a Model-
guided Multi-path Network (MM-Net) that serves as a baseline
model for aerial video saliency prediction. Inspired by the
annotation process in eye-tracking experiments, MM-Net adopts
multiple information paths, each of which is initialized under
the guidance of a classic saliency model. After that, the visual
saliency knowledge encoded in the most representative paths is
selected and aggregated to improve the capability of MM-Net
in predicting spatial saliency in aerial scenarios. Finally, these
spatial predictions are adaptively combined with the temporal
saliency predictions via a spatiotemporal optimization algorithm.
Experimental results show that MM-Net outperforms ten state-
of-the-art models in predicting aerial video saliency.

Index Terms—Multi-path CNNs, knowledge transfer, visual
saliency, aerial video, eye-tracking.

I. INTRODUCTION

V ISUAL saliency prediction is one of the fundamental
vision problems that has been extensively studied for

several decades [1], [2], [3]. With the proposal of compre-
hensive rules [4], [5], large training datasets [6], [7], [8] and
deep learning algorithms [9], [10], [11], [12], the performance
of saliency models has been improving steadily. Meanwhile,
many saliency-based attentive systems have achieved impres-
sive performance in image recognition [13], video compres-
sion [14], content-based adverting [15], robot interaction [16]
and navigation [17]. Despite the success of various existing
models, an important concern still remains in the literature:
whether visual knowledge extracted from existing saliency
models can boost the performance of saliency prediction in
various scenarios, especially the newly emerging ones?

In most existing works, this question is explored using
plenty of images [7] and videos [18] collected from Internet
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Fig. 1: In eye-tracking experiments, saliency maps can be
generated by fusing fixations of multiple subjects. This process
motivates the design of a multi-path network architecture, in
which different paths are guided by different classic saliency
models to encode different knowledge about visual saliency
prediction.

to cover various daily scenarios taken by digit cameras and
mobile phones. In this paper, we conduct research on an
emerging but less studied domain, the aerial videos captured
by drones. A drone can observe the world from many different
viewpoints, providing us an opportunity to revisit the problem
from new perspectives. In particular, from these aerial videos,
we wish to explore reliable answers to two questions in visual
saliency estimation:
1. Whether previous ground-level saliency models still work
well in processing aerial videos?
2. How to transfer the ground-level knowledge to aerial
platforms to develop an aerial saliency model?

To answer these two questions, we collect 1,000 videos cap-
tured by drones, which are then free-viewed by 24 subjects in
eye-tracking experiments to collect dense, accurate fixations.
In this manner, the ground-truth salient regions in aerial videos
can be well annotated, based on which we can benchmark
the performance of various visual saliency models deployed
on drones. By testing the performance of ten ground-level
saliency models, we find these models still work impressively
in capturing salient regions in aerial videos. However, there
still exist large gap between their predictions and the ground-
truth maps. Therefore, it is necessary to explore the way that
drones look and develop a saliency model suitable for the
saliency prediction task on aerial videos.

Based on this dataset, we also develop a Model-guided
Multi-path Network (MM-Net) that can be used as a baseline
model for aerial video saliency prediction. The design of
MM-Net is motivated by the settings of eye-tracking exper-
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Fig. 2: System framework of our proposed baseline model MM-Net. The low-level module extracts low-level features. After
that, these features are delivered into a multi-path module, in which each path is a sub-network pre-trained on massive aerial
scenes under the guidance of a classic saliency model. In this manner, various visual saliency knowledge can be encoded in
multiple paths to enhance the capability of MM-Net in processing aerial videos. To reduce computational cost, we further
propose a selection algorithm to remove redundant paths according to path representativeness, diversity as well as module
complexity. After that, the selected paths are fine-tuned on aerial scenarios to generate spatial saliency maps. They are then
adaptively fused with the temporal saliency predictions to obtain clean and accurate saliency prediction results.

iments (see Fig. 1) and aims to aggregate the visual saliency
knowledge from many classic models into a unified deep
network. As shown in Fig. 2, common low-level features
are first extracted in a low-level module of MM-Net, which
are then fed into a multi-path module. This module contains
multiple information paths, each of which is initialized under
the guidance of a classic saliency model. After that, redundant
paths are identified and removed via a path selection algorithm
that jointly considers path diversity, representativeness and the
overall complexity of the multi-path module. The selected
paths then enter the fusion module, and the visual saliency
knowledge encoded in the selected paths are aggregated to
predict spatial saliency [19] in aerial scenarios. Finally, spatial
saliency maps can be efficiently predicted, which are then
adaptively fused with the temporal saliency predictions to
obtain clean and accurate saliency maps for various types
of aerial videos. Experimental results show that MM-Net
outperforms ten state-of-the-art models on aerial videos.

The main contributions of this paper include: 1) We propose,
to the best of our knowledge, the first large-scale video
dataset for aerial saliency prediction; 2) We propose a Model-
guided Multi-path Network that provides a way to transfer the
knowledge from multiple classic models into a single deep
model; 3) We propose an effective path selection algorithm,
which can be used to balance the complexity and effectiveness
of the multi-path network.

The rest of this paper is organized as follows: Section II
reviews related works and Section III presents the dataset. Our
approach is presented in Section IV and tested in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we present a brief review of computational
saliency models from three aspects: heuristic models, non-deep
learning models and deep learning models.

Heuristic saliency models can be roughly categorized into
bottom-up [1], [20] and top-down categories [21], [22]. The
bottom-up models are stimulus-driven and infer saliency from
visual stimuli themselves with hand-crafted features (e.g., di-
rection, color and intensity) and/or limited human knowledge
(e.g., center-bias). Due to the imperfect hand-crafted features
or heuristic fusion strategies, bottom-up models may have
some difficulties in suppressing background distractors. To
address this problem, some top-down models heuristically
incorporate high-level factors. For example, Borji et al. [23]
proposed an unified Bayesian approach to integrate global
context of a scene, previous attended locations and previous
motor actions over time to predict the next attending locations.
Chen et al. [24] proposed a video saliency model that predicted
video saliency by combining the top-down saliency maps with
the bottom-up ones through point-wise multiplication.

Non-deep learning saliency models propose to learn the
fusion strategies of various heuristic saliency cues [25], [26],
[27]. For example, Vig et al. [26] proposed a simple bottom-
up model for dynamic scenarios with the aim of keeping the
number of salient regions to a minimum. Recently, Fang et
al. [10] proposed an image saliency model by learning a set
of discriminative subspaces that perform the best in popping
out targets and suppressing distractors. Li et al. [28] proposed
a saliency model that measured the joint visual surprise from
intrinsic and extrinsic contexts. However, the hand-crafted
features used in these models may inherently set an upper
bound for the final performance.
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Deep learning saliency models have great advantages in
learning feature representations [29], [30], [31]. For exam-
ple, Kümmerer et al. [32] presented a Convolutional Neural
Network (CNN) that reused AlexNet [33] to generate high-
dimensional features. Pan et al. [9] proposed two designs, a
shallow network and a deeper network, that can be trained
end-to-end for fixation prediction. Lahiri et al. [34] proposed
a saliency model which used a two step learning strategy.
These deep learning models usually have high computational
efficiency and impressive performance in daily scenarios.
However, it is unclear whether these saliency models can be
reused in aerial platforms, which has remarkable viewpoint
and depth changes. Therefore, it is necessary to construct
a large-scale aerial saliency dataset to benchmark saliency
models.

III. THE AERIAL VIDEO SALIENCY DATASET

In this section, we follow [35] to label the salient regions in
the videos by eye-tracking and present a large-scale dataset for
aerial video saliency. Note that such an annotation process is a
regular process in the field of visual video attention prediction
and minimizes the bias from different subjects via a voting
manner, leading to accurate annotations. We also benchmark
classic ground-level models to show the difference and corre-
lation between aerial and ground-level saliency prediction.

A. Dataset Construction

To construct the dataset, we download hundreds of long
aerial videos from Internet that are captured by drones. We
manually divide these long videos into shots and randomly
sample 1,000 shots with a total length of 1.6 hours (i.e.,
177,664 frames at 30 FPS). We find that the dataset mainly
covers videos from four genres: building, human, vehicle, and
others. Thus the dataset, denoted as AVS1K, contains four
subsets that are denoted as AVS1K-B, AVS1K-H, AVS1K-V
and AVS1K-O, respectively.

To annotate the ground-truth salient regions, we conduct
massive eye-tracking experiments involved with 24 subjects.
For each video in the dataset, we collect eye fixations on each
frame and convert them to fixation density maps following the
setting of [35], making the whole dataset densely annotated.
Note that each video is free-viewed by 17-20 randomly select-
ed subjects. All subjects have normal or corrected to normal
vision, and they have never seen these videos before. Note that
we do not provide any prior information to the subjects and
let them watch videos in a free-viewing manner in the eye-
tracking experiments. In experiments, the videos are displayed
on a 22-inch color monitor with the resolution of 1680×1050.
A chin set is adopted to eliminate the error caused by the head
wobble and fix the monitor viewing distance to 75cm. Other
experimental conditions such as illumination and noise are set
to constant for all subjects.

Given the fixation data, we can compute a fixation density
map for each frame to annotate the ground-truth salient
regions, i.e., the salient regions that a drone should look at
from the perspective of human-being. Let It ∈ V be a frame
presented at time t, we measure the fixation density map of

Fig. 3: Sample aerial frames (a, c, e), fixations (red dots) and
ground-truth saliency maps (b, d, f) from AVS1K.

It, denoted as St as in [35]. The value of St at pixel p can
be computed as

St(p) =
∑
f∈FV

δ(tf ≥ t) ·Dspa(f, p) ·Dtem(f, p), (1)

where Dspa(f, p) and Dtem(f, p) measure the spatial and tem-
poral influences of the fixation f to the pixel p, respectively.
By using an indicator function δ(tf ≥ t) that equals 1 if tf ≥ t
and 0 otherwise, we only consider the influence of fixations
in a short period after t. Let (xp, yp) be the coordinate of p,
the values of Dspa(f, p) and Dtem(f, p) can be computed as

Dspa(f, p) = exp

(
− (xf − xp)2 + (yf − yp)2

2σ2
D

)
,

Dtem(f, p) = exp

(
− (tf − t)2

2σ2
T

)
,

(2)

where σD and σT are two constants to control the spatial and
temporal influences of fixations, which are empirically set to
3% of video width (or video height if it is larger) and 0.1s,
respectively. Some representative frames, recorded fixations
and generated ground-truth saliency maps can be found in Fig.
3. Dataset statistics can be found in Tab. I.

B. Model Performance in Aerial Scenarios

As it stands, aerial videos often have higher viewpoints, a
wider field of vision and smaller targets. In other words, the
visual patterns in aerial videos may be remarkably different
from those on the ground. Thus, it is worth exploring the
performance of classic saliency models in aerial scenarios. To
address this concern, we test ten classic saliency models on
AVS1K. These models include AIM [36], AWS [37], BMS
[38], GB [39], HFT [40], ICL [41], IT [1], QDCT [42], SP [43]
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TABLE I: Dataset statistics of the AVS1K dataset.

Dataset Video Max Res. Frames Avg. Len. (s)

AVS1K-B 240 1280×720 41,471 5.76
AVS1K-H 210 1280×720 31,699 5.03
AVS1K-V 200 1280×720 27,092 4.52
AVS1K-O 350 1280×720 77,402 7.37
AVS1K 1000 1280×720 177,664 5.92

TABLE II: Performance comparisons on AVS1K and DHF1K.

Method AVS1K DHF1K
AUC sAUC NSS AUC sAUC NSS

AIM 0.644 0.652 0.944 0.713 0.576 0.812
AWS 0.681 0.728 1.391 0.693 0.571 0.854
BMS 0.710 0.746 1.660 0.743 0.580 1.031
GB 0.612 0.650 0.984 0.631 0.558 0.599
HFT 0.789 0.715 1.671 0.806 0.579 1.323
ICL 0.698 0.651 1.252 0.712 0.535 0.697
IT 0.540 0.572 0.844 0.559 0.517 0.387
QDCT 0.689 0.696 1.302 0.720 0.569 0.909
SP 0.781 0.706 1.602 0.811 0.581 1.400
SUN 0.587 0.603 0.672 0.628 0.546 0.540

and SUN [44]. Note that they are not learning-based and thus
less sensitive to dataset bias. As an intuitive comparisons, we
also show the performance of these models over DHF1K [45],
the latest large-scale video saliency dataset fulfilled with daily
videos collected by digital cameras and mobile phones.

To measure the performance of these models, we select three
widely adopted metrics according to [46], [47], [48], including
the traditional Area Under the ROC Curve (AUC), the shuffled
AUC (sAUC) and the Normalized Scanpath Saliency (NSS).
Typically, AUC may assign high scores to a fuzzy saliency
map if it correctly predicts the orders of salient and less-salient
locations, while sAUC and NSS prefer clean saliency maps
that only pop-out the most salient locations and suppress all
the other regions.

Based on the three metrics, Tab. II shows the performance
of ten classic models on AVS1K and DHF1K. From Tab. II,
we find that the AUC scores of all models on AVS1K are lower
than those on DHF1K. Such inferior performance intuitively
demonstrates that it is challenging for classic saliency models
in dealing with aerial scenarios since they are designed based
on human visual mechanisms on the ground-level but can not
directly fit to aerial scenarios. Note that it is not affected by
the bias of ground-truths labeling. This may be caused by the
fact that aerial videos often have wider field of vision and thus
contain richer contents. Surprisingly, sAUC and NSS, which
focus on the saliency amplitude, achieve even higher scores on
AVS1K than on DHF1K. This implies that the salient targets
in aerial videos, which are usually very small, demonstrate
impressive capability to pop-out from its surroundings from
the higher viewpoints. These results imply that visual saliency
knowledge encoded in classic models can be reused in aerial
saliency prediction after certain domain adaptation operations.

IV. THE MODEL-GUIDED MULTI-PATH NETWORK

A. Path Initialization
Motivated by above observations, we present MM-Net, a

baseline model that absorbs the visual saliency knowledge in
classic models and evolves to handle aerial video saliency like
the human being does. As shown in Fig. 2, MM-Net starts with
a low-level module that consists of two convolution layers
and one max pooling layer. We initialize the parameters of
the low-level module with the first two convolution layers of
VGG16 [49]. Given these low-level features, there exist many
ways in classic models to extract and fuse saliency cues from
them. To make use of the knowledge in these models, we select
the ten classic models we have tested in Section III, each of
which is used to guide the initialization process of a network
path in Fig. 2. In the initialization, we first obtain the saliency
maps of a classic model on the training set (500 videos) and
validation set (250 videos) of AVS1K. These model-estimated
saliency maps are then used as “ground-truth” to fine-tune
the layers in each MM-Net path. Note that the multiple paths
and fusion modules are independently trained. The selected
three paths are fixed in the fusion process. Each path is
initialized with Xavier’s algorithm and the input resolution
is 320× 320. In this process,the low-level module is fixed so
that the parameters of each network path are independently
updated. By minimizing the cross entropy loss between path
outputs and classic model predictions, each path is forced to
behave like a classic model so as to distillate its knowledge
of saliency prediction.

After initialization, MM-Net inherently learns how to ex-
tract and fuse various saliency-related features. However, the
knowledge encoded in different paths is highly redundant, and
how to remove such redundancy to reduce model complexity
is the next issue to be addressed.

B. Path Selection
To remove the path redundancy, we propose a path selection

algorithm that jointly considers path diversity, representative-
ness and the overall complexity of the multi-path module. For-
mally, a binary column vector α with M binary components
(M = 10 in this study) is adopted, which indicates the ith path
is selected if αi = 1, or discarded otherwise. For all the K
frames from the 250 validation videos of AVS1K, we denote
the saliency map predicted by the ith path on the kth frame
as Ski . As a result, the path selection process can be solved
by optimizing

α∗ = arg max
α

Ωr + λdΩd

s.t. 1 ≤ ‖α‖0 ≤M, and αi ∈ {0, 1},∀ i
(3)

where ‖α‖0 denotes the number of non-zero components in α
and thus reflects the complexity of the multi-path module. The
terms Ωr and Ωd denote the representativeness and diversity
to be maximized, respectively. The λd is a weight parameter to
balance the representativeness and diversity, which is empiri-
cally set to 0.2 (its influence on final results will be discussed
in experiments).

The term Ωr is defined according to path similarities. That
is, the unselected paths should be highly similar to selected
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ones that are considered to be representative. This term can
be defined as

Ωr =

M∑
i=1

(1− αi) · max{αj · Simij |∀ j 6= i}

M∑
i=1

(1− αi) + ε

, (4)

where ε is a small value to avoid dividing by zero. The term
Simij measures the similarity between the ith and jth paths
that can be measured in a data-driven manner:

Simij =
1

K

K∑
k=1

W∑
x=1

H∑
y=1

min(Ski
(x, y), Skj

(x, y)), (5)

where W and H are the width and height of the input images,
respectively. By resizing Ski and Skj to the input image
resolution and normalizing them into probability distributions,
Simij measures the average histogram interactions between the
saliency maps estimated by two paths. By maximizing Ωr, the
similarity between selected and unselected paths can become
very high, leading to a less-redundant multi-path module.

The representativeness term Ωr is defined between selected
and unselected paths, while the diversity term Ωd is defined
only on the selected ones that aims to maximize their differ-
ence

Ωd =

M∑
i=1

M∑
j=1

δ(i 6= j) · αi · αj · (1− Simij)

M∑
i=1

M∑
j=1

δ(i 6= j) · αi · αj + ε

. (6)

We can see that this term will penalize the co-selection of two
highly similar paths.

By incorporating (4) and (6) into the optimization objec-
tive (3), we can obtain a binary optimization problem with
quadratic terms. As M is relatively small, enumeration can be
adopted in ideal case. For large M , set optimization methods
(e.g. submodular optimization) can quickly find a good local
minimum.

C. Spatial Prediction and Spatiotemporal Fusion

Since the regular GPU with 11G memory (e.g., GTX
1080Ti) can not afford the training of the proposed model
with a large number of classic methods, we optimize the path
settings within the acceptable range of hardware to seek a
complexity-accuracy trade-off. By solving (3) defined over the
similarity matrix of ten paths, we obtain three representative
paths (i.e., paths pre-trained by IT, QDCT, and SUN in the
given parameters). After that, these selected paths are fused
to output the spatial saliency maps. The overall structure of
MM-Net can be found in Fig. 4. In training MM-Net, the
parameters of the fusion module are randomly initialized and
then optimized with a learning rate of 5× 10−6.

Beyond the spatial fusion of paths, another necessary fusion
is the spatial and temporal saliency maps. Let Sk be the
spatial saliency map given by MM-Net and Tk be the temporal
saliency map given by an existing temporal saliency model

(e.g., [50]). Inspired by [51], we propose to spatiotemporally
fuse Sk and Tk in adaptive fashion:

S∗k = λ · Sint
k + (1− λ) · Ssel

k , (7)

where S∗k is the refined saliency map, Sint
k is the collaborative

interaction of Sk and Tk, and Ssel
k is the selected spatial

or temporal saliency map according to a heuristic rule. λ is
a positive scalar/weight to balance Sint

k and Ssel
k . We first

compute the spatial-to-temporal consistency score Cs2t and
temporal-to-spatial consistency score Ct2s:

Cs2t = e(Sk � Tk)/e(Tk), Ct2s = e(Sk � Tk)/e(Sk), (8)

where e(·) is the entropy function and � indicates the per-
pixel multiplication. We can see that the spatial-to-temporal
consistency Cs2t will be higher than the temporal-to-spatial
consistency Ct2s if the temporal saliency map is cleaner, and
vice versa. As a result, the collaboration interaction map can
be computed by emphasizing the cleaner map:

Sint
k =

Ct2s · Tk + Cs2t · Sk

Ct2s + Cs2t
. (9)

Let dSk and dTk be the weighted average of distances of
salient pixels to their gravity centers in Sk and Tk, respectively.
The Ssel

k is defined as the map with more compact salient
regions:

Ssel
k =

{
Sk if dSk ≤ dTk
Tk otherwise

(10)

Intuitively, we can trust Sint
k if the spatial and temporal

saliency maps are highly consistent. If not, we can select the
most compact map as the final prediction. Let dintk be the
average weighted distances of salient pixels to their gravity
center in Sint

k , the parameter λ can be computed as

λ =

{
min(Ct2s, Cs2t) if dintk < ω ·min(dSk , d

T
k )

0 otherwise
(11)

where ω is a predefined weight that is empirically set to 2.1 (its
influence will be discussed in experiments). By incorporating
(9), (10) and (11) into (7), we can adaptively fuse the spatial
and temporal saliency maps.

V. EXPERIMENTS

We test our approach using the proposed aerial video
saliency dataset AVS1K as well as the latest video saliency
dataset DHF1K [52] that are fulfilled with daily scenarios
captured by digital cameras and mobile phones. Both datasets,
to the best of our knowledge, are currently the largest in their
own domain. For DHF1K we use the official split, which
contains 600, 100 and 300 videos for training, validation and
testing, respectively.

On these two datasets, we compare MM-Net and two
variants: MM-Net+ (with spatiotemporal refinement) and MM-
Net- (without spatiotemporal refinement and the guidance of
classic models). We also make comparisons with ten state-of-
the-art models, including the heuristic group (H Group) HFT
[40], SP [43] and PNSP [50], the Non-Deep Learning Group
(NL Group) SSD [5] and LDS [10], and the Deep Learning
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Fig. 4: The structure of MM-Net, including (a) low-level
module, (b) multi-path module and (c) fusion module.

Group (DL Group) eDN [27], iSEEL [53], SalNet [9], DVA
[52] and STS [54]. Among these models, iSEEL and eDN are
built on pre-extracted features and thus cannot be re-trained.
For the other three models, we fine-tune them on the two
datasets and use a mark ∗ to indicate the retrained model.

In the comparisons, we adopt five evaluation metrics, in-
cluding the aforementioned AUC, sAUC and NSS as well as
the Similarity Metric (SIM) [55] and Correlation Coefficient
(CC) [56]. SIM is computed to measure the similarity of
two saliency maps as probability distributions, while CC is
computed as the linear correlation between the estimated and
ground-truth saliency maps. Values of all the five metrics are
positively correlated with the performance.

A. Comparison with the State-of-the-art Models

Performance of 13 evaluated models on the AVS1K dataset
are shown in Tab. III. We also illustrate the Receiver Operating
characteristics Curves (ROC) in Fig. 5 and several represen-
tative results of these models in Fig. 6.

From Tab. III, we find that our fundamental multi-path
network MM-Net-, in which the spatiotemporal refinement and
the guidance of classic models are not used, still outperforms
the other ten state-of-the-art models in terms of NSS and
CC and ranks the second place in terms of AUC (worse
than DVA), sAUC (worse than SalNet) and SIM (worse than
DVA). Note that NSS is the primary metric recommended
by many surveys on saliency evaluation metrics [52], [57].
The impressive performance of MM-Net- can be explained
by its multi-path structure. The low-level module of MM-
Net- can extract many low-level preattentive features, based

TABLE III: Benchmarking results on AVS1K. The best and
runner-up models of each column are marked with bold and
underline, respectively. Except our models, the other deep
models fine-tuned on AVS1K are marked with *.

Models AUC sAUC NSS SIM CC

H
HFT 0.789 0.715 1.671 0.408 0.539
SP 0.781 0.706 1.602 0.422 0.520

PNSP 0.787 0.634 1.140 0.321 0.370

NL SSD 0.737 0.692 1.564 0.404 0.503
LDS 0.808 0.720 1.743 0.452 0.565

DL

eDN 0.855 0.732 1.262 0.289 0.417
iSEEL 0.801 0.767 1.974 0.458 0.636

SalNet∗ 0.797 0.769 1.835 0.410 0.593
DVA∗ 0.864 0.761 2.044 0.544 0.658
STS∗ 0.804 0.732 1.821 0.472 0.578

MM-Net 0.858 0.771 2.110 0.547 0.673
MM-Net- 0.860 0.768 2.087 0.541 0.666
MM-Net+ 0.869 0.784 2.133 0.532 0.682

Fig. 5: ROC curves of 13 models on AVS1K.

on which the multi-path module can further extract saliency
cues at higher levels from different perspectives. These high-
level saliency cues are then fused to obtain the final saliency
map. In this way, MM-Net- has better representation capability
when compared with traditional single path network (such as
SalNet) and classic two-stream network for video (such as
STS). Although DVA also adopts a multi-stream structure that
directly fed supervisions into multi-layers, the MM-Net- still
performs better than DVA in terms of sAUC, NSS and CC.

In Tab. III, we also find that MM-Net outperforms MM-Net-
in terms of all metrics except AUC. This can be explained by
the model guidance strategy adopted in training multiple paths.
After initializing different network paths under the guidance of
selected models with heuristically designed saliency features
and rules, MM-Net inherently learns how to extract and fuse
saliency-related features. In this manner, the biases of classic
models can be further investigated and utilized to improve the
saliency prediction accuracy. As a result, the effectiveness of
the model guidance strategy can be well justified.
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Fig. 6: Representative frames of state-of-the-art models on AVS1K. (a) Video frame, (b) Ground truth, (c) HFT, (d) SP, (e)
PNSP, (f) SSD, (g) LDS, (h) eDN, (i) iSEEL, (j) SalNet, (k) DVA, (l) STS, (m) MM-Net, (n) MM-Net-, (o) MM-Net+.

From Tab. III, we also observe that MM-Net+ outperforms
all the other models in terms of all metrics except SIM. This
may be caused by the proposed spatiotemporal optimization
algorithm. Based on the mutual consistency and weighted
spatiotemporal saliency, the optimization algorithm tends to
generate cleaner saliency maps with more compact salient
regions (see Fig. 6). As a result, the most salient locations can
pop-out in the saliency maps predicted by MM-Net+, leading
to high NSS and sAUC scores.

We also find that the heuristic models in the H Group
perform worse than the models in the NL Group and the
DL Group. For H Group, the key issue here is that hand-
crafted features designed for daily scenarios may be no longer
suitable for the aerial scenarios. In other words, there may
exist many irregular saliency visual patterns in aerial videos,
which should be learned from data. This also explains the
impressive performance of models in the DL Group since
they can benefit from the powerful capabilities of CNNs in
extracting hierarchical feature representations.

From these results, we conclude that, in aerial scenarios, the

salient visual patterns as well as the feature fusion strategies
may become remarkably different. As a result, it is necessary
to learn the saliency cues and their fusion strategies that
best characterize the salient visual patterns from the aerial
perspective. In addition, there exist some inherent correlations
between the daily and aerial scenarios, implying that a drone
can also benefit from the knowledge encoded in previous mod-
els in learning how to look. By transferring such knowledge,
a drone can gain a better capability of handling various visual
patterns.

B. Performance Analysis

In this section, we conduct several experiments to analyze
the performance of MM-Net+ (and MM-Net) from multiple
perspectives, including parameter influences, generalization
ability and performance on four subsets of AVS1K.

In the first experiment, we analyze the parameter λd in (3)
that is used to balance the representativeness and diversity
in MM-Net+. The NSS curve of MM-Net+ on AVS1K with
different λd is shown in Fig. 7. From Fig. 7, we find that when
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Fig. 7: Performance of MM-Net+ on AVS1K with the paths
selected under different λd. In a wide range of λd, the selected
paths stay almost stable (i.e., 2 or 3 paths)

λd falls in [0, 0.24], MM-Net+ achieves the best performance
(NSS=2.133) with three representative paths (IT, QDCT and
SUN). When λd grows, the number of selected path decreases.
When λd falls in [0.26, 0.56], MM-Net+ has lower complexity
(only two selected paths, BMS and IT) as well as the lowest
performance (NSS=2.035). When λd grows larger, only two
paths keep on being selected but they may be guided by
two different models. For example, when λd falls in [0.58,
0.68], MM-Net+ selects AIM and IT with NSS=2.093. When
λd falls in [0.70, 1.00], MM-Net+ selects IT and SUN with
NSS=2.093. To sum up, in a wide range of λd, the path
selection algorithm tends to select two or three paths to reduce
the model complexity. Therefore, we select λd = 0.2 in all
experiments for pursuing better performance at an acceptable
performance.

In the second experiment, we analyze the parameter ω in
(11) that serves as a threshold in computing λ and further
balance the fusion of spatial and temporal saliency maps
in MM-Net+. The curves of AUC, sAUC, NSS, SIM and
CC scores on AVS1K with different ω are shown in Fig.
8. We find that the AUC, NSS and CC curves are convex,
the sAUC curve is monotonically increasing, and the SIM
curve is monotonically decreasing. The overall performance
is generally stable when ω falls between [1.8, 2.3]. With a
small ω, many saliency maps are refined with λ = 0 (see
(11)), implying that the spatial and temporal saliency maps
cannot be adaptively fused in (7). On the contrary, a large
ω may generate non-zero λ in most cases and thus lead to
noisy saliency maps due to the additive fusion strategy of (7).
Therefore, we select ω = 2.1 in all experiments.

In the third experiment, we do some ablation studies to
show how the path selection and spatiotemporal fusion affects
or contributes to the saliency estimation. We present the
performance of different settings of path selection in Tab.
IV. From this table, we find that both the path selection and
spatiotemporal fusion boost the performance of saliency pre-
diction on aerial videos. The model with three paths is superior
to those with two paths ones. This can be interpreted as the
three paths that can encode more complete visual knowledge
into the overall model, leading to more powerful intermediate
representations. Meanwhile, we find that performance gaps
exist between the different selection of classic models. The
overall performance not necessarily positively relates to the

Fig. 8: Parameter analysis on AVS1K with different ω in the
interval [1.1, 3.0].

TABLE IV: Performance of different settings of path selection
and spatiotemporal fusion on AVS1K. The best and runner-up
models of each column are marked with bold and underline,
respectively.

Init Fusion Nums Paths AUC sAUC NSS SIM CC

3 – 0.860 0.768 2.087 0.541 0.666
X 3 IT,QDCT,SUN 0.858 0.771 2.110 0.547 0.673
X X 3 IT,QDCT,SUN 0.869 0.784 2.133 0.532 0.682
X X 2 AIM,IT 0.867 0.778 2.093 0.527 0.670
X X 2 BMS,IT 0.861 0.769 2.035 0.514 0.650
X X 2 IT,SUN 0.872 0.781 2.110 0.528 0.674

performance of the classic models but depends on the fitness
of the encoded knowledge.

In the fourth experiment, we compare MM-Net with 16
state-of-the-art models on the latest video saliency dataset D-
HF1K that are fulfilled with videos captured by digital cameras
and mobile phones. The main objective of this experiment
is to verify the generalization ability of MM-Net on various
scenarios. Quantitative results of these two models, after being
fine-tuned on DHF1K, are shown in Tab. V. We can observe
the proposed MM-Net outperforms the DVA on DHF1K in
terms of all of metrics except for NSS. This proves the
generalization ability of MM-Net, implying that the multi-path
network architecture can be used for the saliency prediction
task in both aerial and daily scenarios.

To verify the mutual generalization ability of saliency
models in the aerial and general scenarios, we present the
performance of two general models in Tab. VI. This table
demonstrates the poor mutual generalization ability of saliency
models in the aerial and general models.

Furthermore, to verify the performance of MM-Net+ on
different scenarios, we show its performance on the four
subsets of AVS1K in Tab. VII. MM-Net+ have relatively better
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TABLE V: Performance comparison of 16 state-of-the-art mod-
els on DHF1K. The best and runner-up models of each column
are marked with bold and underline, respectively.

Models AUC sAUC NSS SIM CC

St
at

ic
m

od
el

s ITTI [1] 0.774 0.553 1.207 0.162 0.233
GBVS [39] 0.828 0.554 1.474 0.186 0.283
SALICON [58] 0.857 0.590 1.901 0.232 0.327
Shallow-Net [9] 0.833 0.529 1.509 0.182 0.295
Deep-Net [9] 0.855 0.592 1.775 0.201 0.331
DVA [52] 0.860 0.595 2.013 0.262 0.358

D
yn

am
ic

m
od

el
s

PQFT [59] 0.699 0.562 0.749 0.139 0.137
Seo et al. [20] 0.635 0.499 0.334 0.142 0.070
Rudoy et al. [60] 0.769 0.501 1.498 0.214 0.285
Hou et al. [41] 0.726 0.545 0.847 0.167 0.150
Fang et al. [50] 0.819 0.537 1.539 0.198 0.273
OBDL [61] 0.638 0.500 0.495 0.171 0.117
AWS-D [62] 0.703 0.513 0.940 0.157 0.174
OM-CNN [63] 0.856 0.583 1.911 0.256 0.344
Two-stream [54] 0.834 0.581 1.632 0.197 0.325
Ours* 0.875 0.627 1.972 0.271 0.389

* Tested on the validation set of DHF1K.

TABLE VI: Performance comparison of two general models
on AVS1K and DHF1K.

Method AUC sAUC NSS SIM CC

DVA* 0.807 0.610 1.071 0.354 0.351
SalNet* 0.754 0.617 0.980 0.295 0.319
DVA+ 0.822 0.574 1.430 0.240 0.283
SalNet+ 0.799 0.574 1.312 0.189 0.261

* Trained on DHF1K and tested on AVS1K.
+ Trained on AVS1K and tested on the validation set of DHF1K.

performance on AVS1K-H and AVS1K-V than on AVS1K-
B and AVS1K-O. In most aerial videos, humans and vehi-
cles usually have relatively appropriate sizes and significant
motions, which makes them easier to pop-out from the local
context. On the contrary, buildings are static and usually have
big sizes, making both the spatial and the temporal saliency
prediction challenging. Similarly, AVS1K-O contains many
diverse scenarios about planes, boats and animals. In these
cases, the appearances and motion patterns of salient targets
may change remarkably, making it difficult to separate them
from distractors.

VI. CONCLUSION

In this work, we introduce a large-scale video dataset for
aerial saliency prediction. Based on this dataset, we propose
MM-Net, a baseline model for aerial saliency prediction,
which adopts a multi-path network structure and a model-
guided training strategy to transfer human knowledge from
classic models into the network paths. A spatiotemporal op-
timization algorithm is also proposed to fuse the spatial and
temporal saliency maps. Experimental results demonstrate the
superior performance of our proposed models.

In the future work, we will explore the feasibility of learning
a saliency model with few or none domain-specific training
data. Such one-shot or zero-shot learning may further help
the deployment of visual saliency models in many unknown
scenarios.

TABLE VII: Performance of MM-Net+ on subsets of AVS1K.
The best and runner-up models of each column are marked
with bold and underline, respectively.

Subset AUC sAUC NSS SIM CC

AVS1K-B 0.872 0.780 1.974 0.543 0.681
AVS1K-H 0.892 0.808 2.482 0.548 0.729
AVS1K-V 0.865 0.826 2.497 0.566 0.759
AVS1K-O 0.859 0.757 1.926 0.503 0.630
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