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ABSTRACT

Many real-world applications today like video surveillance and
urban governance need to address the recognition of masked faces,
where content replacement by diverse masks often brings in in-
complete appearance and ambiguous representation, leading to
a sharp drop in accuracy. Inspired by recent progress on amodal
perception, we propose to migrate the mechanism of amodal com-
pletion for the task of masked face recognition with an end-to-end
de-occlusion distillation framework, which consists of two modules.
The de-occlusion module applies a generative adversarial network
to perform face completion, which recovers the content under the
mask and eliminates appearance ambiguity. The distillation module
takes a pre-trained general face recognition model as the teacher
and transfers its knowledge to train a student for completed faces
using massive online synthesized face pairs. Especially, the teacher
knowledge is represented with structural relations among instances
in multiple orders, which serves as a posterior regularization to en-
able the adaptation. In this way, the knowledge can be fully distilled
and transferred to identify masked faces. Experiments on synthetic
and realistic datasets show the efficacy of the proposed approach.
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Figure 1: Inspired by the mechanism of amodal percep-
tion, we propose to solve masked face recognition via de-
occlusion distillation that first enforces face completion,
then inherits rich knowledge from pre-trained recognizor
via distillation. In this way, both incomplete visual contents
and inaccurate identity cues can be well recovered.
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1 INTRODUCTION

Human faces in the wild are often occluded by masks, intention-
ally or unintentionally. The ability to handle recognition towards
masked faces is essential for many visual applications, e.g. video
surveillance [19] and urban governance [16]. In the last few years,
the deep-learning-based face recognition models [3, 47, 49, 50, 52,
61] have been able to achieve or even exceed human-level per-
formance on public benchmarks. This has much attributed to our
growing understanding of how our brain may be solving the identity
recognition task. However, face recognition under more challeng-
ing conditions, such as masked faces, is less characterized. The
question is how to represent these masked parts of perceived faces:
this is the problem of amodal perception [37].
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To facilitate recognition towards masked faces, intuitive meth-
ods [54, 56] that seek to extract credible features from visible regions
permit direct mapping between the input partial observation in
the source domain and expected output in the target domain. They
usually split the input image into several local parts and predict the
possibilities of each being masked, on which the allocated weights
for local parts are based. These approaches are supported by biolog-
ical neural science conclusions that masked objects are selectively
perceived as disconnected elements [5, 22].

Recent researches have proved amodal completion indispensable
in perceiving partly-observed objects. In [5] Chen et al. revealed that
amodal completion is first manifested in face-selective areas, then
implemented through feedback and recurrent processing among
different cortical areas. Via attention mechanism and context re-
straints, many effective algorithms for occluded object recognition
have been proposed [20, 52]. However, different from general object
or shape recognition, facial identity relies on both shape/view and
appearance [4]. The latter involves more complexity and ambiguity
when being masked. Given an example, with an image of a man
with a face mask, it’s rather easy to tell from isolated parts like eyes
that there is a man, while difficult to tell his identity. Amodal per-
ception for masked faces is hard to achieve by conventional Deep
Neural Networks (DNNs), where completion is done implicitly.

We propose to explicitly regularize the amodal completion pro-
cess. The most related task is face completion. Recent approaches [18,
26, 41, 57] based on Generative Adversarial Networks (GANs) [11],
which formulate completion as a conditional image generation
problem, have evolved as compelling tools that generate photo-
realistic results. However, recently Joe et al. [36] looked into the
question that whether generative face completion helps recogni-
tion. Experimental results showed that, though completion greatly
please biometric systems, the benefit for recognition is limited. We
suspect that it arises from the innate selectivity-invariance pattern
of CNNs, where higher layers of representation amplify shared
aspects and suppress irrelevant variations [23]. General constraints
on efficient generative completion naturally lead to an axis repre-
sentation with strong appearance bias. There exists a clear domain
gap between the inexact visual imagery [38] and realistic faces.

In this work, inspired by the amodal completion mechanism in
the human brain, we propose a novel de-occlusion distillation frame-
work to deal with the task of masked face recognition, as shown in
Fig. 1. The model consists of two main modules, de-occlusion and
distillation. The de-occlusion module applies a GAN-based face com-
pletion network to eliminate the appearance ambiguity and enables
the masked face to be perceived as a whole. The attention mecha-
nism is introduced to teach the model to “look” at informative areas.
Then to subsequently benefit recognition, the distillation module
takes a pre-trained general face recognition model as the teacher
and adapts its knowledge to completed faces through knowledge
distillation. Recently Ge et al. [9] employed identity-centered regu-
larization and gained an effective accuracy boost, which inspired
us to exploit in deep generative models rich problem structures
and domain knowledge. Assuming the distribution of unmasked
faces could provide essential guidance, we represent the teacher
knowledge with structural relations among instances. Via enforc-
ing various orders of structural similarities to provide a posterior
regularization, the student learns to perform accurate recognition

towards completed faces. We evaluate the proposed method on both
synthetic masked face datasets (Celeb-A [32] and LFW [17]) and
realistic masked face datasets (AR [35]), both showing compelling
improvements on recognition accuracy.

Our main contributions can be summarized as three folds: 1) We
propose a novel end-to-end framework for masked face recognition,
which first enforces face completion explicitly and then transfer
rich domain knowledge from pre-trained general face recognition
model via knowledge distillation; 2) We introduce the theory of
amodal perception to shed light on the masked face recognition
task, and our empirical results echo the theory and 3) We conduct
extensive experiments to demonstrate the efficacy of our approach.

2 RELATED WORKS
2.1 Amodal Perception and Face Completion

Humans are able to recognize objects even when they are partially
occluded by another pattern, so easily that one is usually not even
aware of the occlusion. The phenomena of completion of partly
occluded shape have been termed “amodal perception” [37], since
the occluded contours are not seen. Kovacs et al. [22] found that
single IT units remain selective for shape outlines under a variety of
partial occlusion conditions, physiologically locating where amodal
perception happens for the first time. So one last question we care
about is: how the occluded contents are represented. In [22] the dis-
crimination performance was found much better when they were
familiar with the subjects. This suggests that amodal perception
relies heavily on our background knowledge of how the occluded
parts of the object (may) look. They also find that the IT cells only
respond to selective fragments, and conclude that amodal comple-
tion doesn’t happen. Chen et al. [5] delves into the time course of
amodal completion in face perception. Their results suggest amodal
completion is first manifested in face-selective areas, then imple-
mented through feedback and recurrent processing among different
cortical areas. Therefore, amodal completion plays an indispensable
role in perceiving partly-observed objects.

Face completion, or inpainting, aims to recover masked or miss-
ing regions on faces with visually plausible contents. Traditional
exemplar-based approaches [1, 12] searched similar patches as refer-
ence for the synthesis of missing regions. While this non-parametric
manner achieves good results when similar content is available, the
mechanism is not scalable for objects with unique textures, e.g. faces.
Recently, the GAN-based architecture has been widely adopted in
completion with visually satisfactory results [18, 26, 41, 44, 58].
They usually train an auto-encoder to predict the missing region
using a combination of reconstruction loss and adversarial loss.
Despite their capacity in recovering high-quality visual patterns,
the recognition accuracy gain is still limited [36].

2.2 Occluded Object Recognition

Partial occlusions are one of the greatest challenges for many vision
tasks, e.g. classification [20], recognition [61], and person re-ID [27].
Various approaches have been proposed to solve the problem, fol-
lowing “representation” or “representation” idea. The “represen-
tation” idea seeks to obtain robust representations for occluded
objects by decreasing or excluding the influence of missing regions
and tapping the useful information. Some methods first segmented



a face image into several local parts and then described the face
using the ordered property of facial parts [52] or extracting discrim-
inative components [20, 25]. Other methods directly take the whole
face image as input instead, and represent it with a good descriptor,
such as sparse representation [56] and low-rank regularization [42].

Different from the “representation” idea, the “reconstruction”
idea utilizes the redundancy of images and performs information
recovery before recognizing. Deng et al. [8] proposed an exemplar-
based Graph Laplace algorithm to complete masked faces. In this
way, the approach can use the completed faces to boost the recog-
nition accuracy. It performs well when a similar appearance and
expression can be found in the library. However, the type and shape
of the occlusions are innumerable and unpredictable in real scenar-
ios, which limits its applications. More recently, GAN-based face
completion approaches [18, 26, 41, 44, 55, 57, 58] have achieved
remarkable improvement in extracting high-level contextual rep-
resentations and generating photo-realistic results. However, the
identity consistency during completion is less considered. [60, 61]
enforce identity preservation through perceptual loss. To exploit
structural domain knowledge, [45] proposes a structural loss to
constrain the structure of the generated image. Alternatively Ge et
al. [9] exploit structural domain knowledge in feature space and
employ identity-centered regularization.

2.3 Knowledge Distillation and Transfer

Transfer learning aims to mitigate the burden of manual labeling
for machine learning by transferring information between differ-
ent domains or tasks. The most common approach is to fine-tune
models pre-trained on public datasets like ImageNet [6] for specific
tasks with labeled data. Recently, as a special branch in transfer
learning, knowledge distillation has gained much interest and ex-
hibited remarkable capability in knowledge transfer. Knowledge
distillation was first introduced by [2] and [15] presented a more
general approach within the scope of a feed-forward neural net-
work. By using the softmax output of the teacher network as soft
labels instead of hard class labels, the student model can learn
how the teacher network studied given tasks in a compressed form.
Romero et al. [46] improved the method by using not only the final
output but also intermediate hidden layer values of the teacher
network to train the student network. To encourage the diversity
of learning, Luo et al. [34] utilized the ensemble of multiple net-
works as the teacher to train a compact student network for face
recognition. All these methods assumed that the input data of the
teacher and student model are from the same domain. To boost the
domain adaptation task, Su and Maji [48] proposed cross quality
distillation to learn models for recognizing low-resolution images,
non-localized objects, and line-drawings by using soft labels of
high-resolution images, localized objects, and color images, respec-
tively. Radosavovic et al. [43] proposed data distillation to ensemble
predictions from multiple transformations of unlabeled data to
automatically generate new training annotations.

3 DE-OCCLUSION DISTILLATION

In this section, we first provide an overview of our proposed ap-
proach, then describe the details of each network component as
well as the loss functions.

3.1 Problem Formulation

Masked faces are faces that not fully observed. In this section, we
dissect the problem of masked face recognition and try to provide
simple yet solid explanations for two questions: i) What help does
data recovery do? ii) What needs to do after data recovery?

Here we describe the generative process for partly observed data,
following the setting of missing data processing [28]. Let X € R"”
be a data vector and M € {0, 1}" is a binary mask indicating which
entries in X to reveal: x; is observed if my = 1 and vise versa.

X~ po(X), M ~ pp(M[X), 1)

where 6 denotes the parameters of data distribution and ¢ denotes
the parameters of the mask distribution. The mask distribution
is usually assumed to depend on the data X. Let X, denote the
observed elements of X, and X, denote the missing elements ac-
cording to the mask M. We define the target attribute as a;. In the
standard maximum likelihood setting, the unknown parameters
are estimated by maximizing the following marginal likelihood,
integrating over the unknown missing data values:

P1:X0) = [ PoXarXon) P (MIXa X Py a1lXo: Xi) X
()
where py (a;|Xo, Xm) is a recognizor that gives prediction with
X, replacing the missing region. Due to the ambiguity introduced
by masks, the optimization process involves integration over lit-
erally infinite possible X;,. Even with the remarkable capacity of
well-crafted DNN:G, it is difficult to reach convergence. One simple
technique is to multiply with an impulse function (X, — Xp):

oo, X =X
0, X # Xp

The physical meaning for this operation is to select the best
restoration X, for the missing data based on certain criterions, e.g. the
coherence with the observed data regarding the wearing mask, mea-
sured by pg(Xo, Xm)pe(m|Xo, X,n). In this way, the optimization
problem in Eq. 2 can be simplified as:

(X -Xo) = { ®)

p(ar, Xo) = / 16 (Xo, Xm) - pp(m|Xo, Xpm)
Py (@cXo, Xim) - X — Xpm) dXpm “)
= po(Xo, Xm) 'P(p(mlxo, Xm) 'sz/(at 1Xo, Xm),

Xm = argmax pg(Xo, Xm) ~p(p(m|Xo,Xm), ©)
X

which turns out to be proportional to the prediction towards the
completed data py (a:|Xo, Xn), as the former two terms can be
seen as constants once Xm is decided. Via data recovery, we turn
the intricate problem in Eq. 2 into two sub-problem: finding the best
restoration X,,, and acquiring accurate prediction py(ar|Xo, Xom).
This answers for our first question.

Naturally we wonder if py (a¢[Xo, X,n) could adopt a pre-trained
state-of-the-art recognition model for faces in the wild. Following
our former analysis, the optima X, is obtained by solving a maxi-
mum optimization. Numerical solutions for these high-order space
concerning optimizations are not available. In practice, we approach
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Figure 2: Overview of our proposed framework. The learning process consists of two stages. In the first stage, we initialize
the input of the student model via an inpainting model. In the second stage, we do cross-quality knowledge distillation and
transfer the knowledge contained in the teacher recognizor for normal faces into student recognizor by enforcing relational
structure consistence. In this manner, the student network for recognizing masked faces learns representations for completed
faces with the same clustering behaviors as the original ones, which could greatly benefit recognition accuracy.

the optima in a data-driven way. This leads to a recovery process
that is logically tractable while not accurate enough. Experiments
in [36] support our theory. As it claims, though face completion
seems pleased for a biometric system, for recognition tasks, its con-
tribution is limited. The tractability decreases the representation
capacity of the model, making it hard to deal with the turbulence in
feature space, brought by varied masks. The deficiency of accuracy
also suggests the domain gap regarding latent identity features. To
sum up, a general recognition model is not the best fit for recogniz-
ing completed faces, yet a knowledgeable adaptation source.

In this work, we propose to solve masked face recognition with
MER = {G; R}, where G and R denote a de-occlusion module and
a distillation module separately. The missing information is recov-
ered first in image space via inpainting-based de-occlusion, then
in feature space via knowledge distillation. We use a de-occlusion
module G(X, M; W g) to approximate the maximum optimization
in Eq. 5. It takes masked faces X as input, and aims to generate com-
pleted faces X by realistically approximating the ground-true faces
Y, where M denotes the binary masks labeling the masked regions
with 1 inside Q and W g is the set of model parameters. The distilla-
tion module adopts a teacher-student scheme to distill knowledge
from a pre-trained teacher network R;(Y; W;) for general faces Y
into a simpler student network Rs(X; W) for completed faces X by
transferring structural relational knowledge. Here, W; and W refer
to the model parameters for the teacher and student, respectively.
In this way, we formulate the final goal function as:

R(a;|X, G X, M; W), Weg) —
ngf}géﬂ (ar1X, G( G Wg)

ER:(Y; W), RX, GX.M; W) Wg)).

(6)

3.2 Appearance Recovery via Completion

In the de-occlusion module, we explicitly enforce amodal comple-
tion via a generative face completion model. First, it’s important to
emphasize that amodal perception is manifested in face-selective
areas, and masked faces are perceived as disjointed segments. At-
tention plays a very important role here. We adopt the same archi-
tecture as in [57], which consists of a generator for inpainting and
two auxiliary discriminators for regularizing from local and global
views, with a contextual attention mechanism.

Generator Given an image of a masked face and a binary mask
indicating the missing regions, the generator G(X, M; W g) aims to
generate a photo-realistic result as similar with the ground-truth
as possible. To achieve that, a pixel-wise reconstruction loss is
employed to penalize the divergence, formulated as:

Lg =0(XY) =(GXM;Wg),Y). ™)
Local and Global Discriminators Two discriminate networks
are adopted to identify whether input images are real or fake from
global and local views, respectively. The global discriminator takes
the whole image as input, while the local one uses the completed
region only. Contextual information from local and global views
compensate each other, eventually reaching a balance between
global consistency and local details. They regularize the generator
via local and global adversary losses:

Lp, = mgin rrgx E[log D;(Y) + log(1—
DI(G(X’M))WQ)]! i € {9,1},

where D; denotes the global discriminator when i = g and the local
discriminator when i = .

(®)



Contextual Attention The contextual attention layer enables the
generator to refer to features from the whole image and to learn
long-distance semantic dependencies. It computes the similarity of
patches centered in missing pixel (m, n) and observed pixel (p, q):

) ©

Xp,q Xm,n

Sp,q,m,n =< s =
Pa 1p,qlI” 1 Zm,nll

where x and X denotes the masked and the completed face im-
age, separately. The calculated similarities are then send through
a softmax layer to obtain attention score for each pixel s, ; 1, ,, =
softmaxm,n(A - sp,q,m,n), where A is a constant value. Finally the
image contents are reconstructed by performing de-convolution on
attention score. The contextual attention layer is differentiable and
fully convolutional. Implementation details refer to [57].

3.3 Identity Recovery via Distillation

The last stage has recovered missing visual contents via GAN-based
face completion. Experiments suggest activations responsible for
amodal completion happen in the same place where cells are acti-
vated when we visualize objects with our eyes closed [21]. It is easy
to accept that between an actual visual stimulus and visual imagery,
there exists a non-ignorable domain gap. We here raise our insight
that, between the ground truth and the heuristic completion results,
there also exists a non-ignorable domain gap. This is consistent
with the unsatisfactory performance of generative face completion
helping recognition applications. To bridge the gap, we propose to
rearrange the identity features via knowledge distillation.

Knowledge distillation is a widely applied technology to transfer
the knowledge from a cumbersome teacher network into a com-
pact counterpart. To be general, the goal function for traditional
knowledge distillation can be formulated as:

Ly = Z U(ti, si)s (10)
x;eX
where t; and s; denote the feature representation produced by the
teacher and student respectively, with x; as input; and [ denotes
specific loss function adopted to penalize the differences.
Traditional distillation usually focuses on classification tasks,
trained with the Cross-Entropy loss. During training, the output
class distribution generated by the student is forced to be close
to that of the teacher. In this way, the student could obtain better
results than directly trained with class labels. The main reason
may lie in that probability distribution over classes provided by the
teacher’s output, reveals relevance information between classes,
therefore providing richer knowledge than ground truth labels.
However, the present distillation methods remain limited. Ex-
isting distillation methods usually focus on the point-wise simi-
larity between representations of teacher and student. Previous
researches [7, 39, 49, 52] have verified that instance relationships
can help reduce the intra-class variations and enlarge the inter-class
divergences in the feature space. Nevertheless this is rarely consid-
ered in distillation. We assume that what constitutes the knowledge
is better presented by relations of the learned representations than
individuals of those, and the structural distribution of unmasked
faces could provide essential guidance for the identity feature re-
arrangement of completed faces. Besides, point-wise distillation
methods usually require the teacher and student to share similar

network architecture and close data domains. Here in the masked
face recognition scenario, we seek to distill the rich knowledge
about feature distribution for unmasked faces and use them to
guide the rearrangement of that of completed faces. The common
characteristics we seek here should be the aggregation behaviors,
in other words, the instance relationships, which are more robust
to network changes and domain shifts.

Let gﬁt(Y; W,) and qgs(f(; W) be the sub-networks composed
by the first several layers of the teacher network ¢;(Y; W;) and
the student network ¢s(X; Wy), respectively, where Y and X is
the corresponding input. d?t (Y; W) is the feature extraction back-
end before the softmax layer for extracting the identity features of
unmasked faces, while 9{;5 (f(; WS) denotes the layers before the em-
bedding layer, used to extract features of masked faces. The training
process of the student network can be described as transferring
the relational structure of the output representation gzgt (Y;Wy) to
gﬁs (X; W), to improve the final recognition ability of ¢s(X; Wy).
Let Y” and X" denote a set of n-order tuple of unmasked and com-
pleted faces respectively, s; = ¢;S (%:; W) is the student knowledge
gained from a completed face and t; = dgt(yi;Wt) is the teacher
knowledge distilled from the corresponding ground-truth. The loss
function for n-order distillation process can be formulated as

Ly = Z
(Y1,----yn)eY”,
(F1,...,%n) X"
where ¥/ is a relational potential function that measures relational
similarity between given n-tuple of teacher and student models,
and [ is a loss that penalizes structural difference based on that.
To efficiently transfer the relational knowledge, we here intro-
duce relational loss in three orders, enforcing structural similarity
in instance-wise, pair-wise and triplet-wise fashion, respectively.
Instance-Wise Relational Loss Following the vanilla setting, we
enforce instance-wise similarity via punishing the difference

Li= Z

y; €Y, X; eX

Wt tn) Y1, osn)) - (10)

b1(ti, si), (12)

where {1 loss is chosen instead of {5 loss because it deals better
with abnormal points. In this task, besides the gap between teacher
and student domain, there also exists great variance within the
student domain. Despite better convergence and more robustness,
{3 loss would bring unwanted smoothness.

Pair-Wise Relational Loss Recent several works have used pair-
wise relational distillation loss in tasks such as image classifica-
tion [30], image retrieval [59] and semantic segmentation [31]. It is
used to transfer pair-wise relations, especially pair-wise similari-
ties in our approach, among instances. We formulate the pair-wise
relational knowledge distillation loss as follows:

Ly= D LsWpltity) yp(sis)), (13)

(yi,yj)eY?,

(fi,)}j)ei(z
where {5 is Huber loss, and y,(t;,t;) = i”ti - tjll2 is the pair-
wise potential function which measures the Euclidean distance
between the two instances t; and t; in a mini-batch space. p =
ﬁ Z(y,-,yj)eYz |It; — tj]l2 is a normalization factor, which enables



relational structures transferring disregarding the difference in
space dimensions between source and task field.

Triplet-Wise Relational Loss The structure within a triplet could
provide more strict regularization than that of a pair. Inspired by
this, [40] propose a triplet-wise relational distillation loss:

Li= ) LWttt YeGisps)),  (19)
(Y1, Y5, yr)eY’,
(Fi,%, %)X’
where I5 is Huber loss, and the corresponding triplet-wise potential
function which measures the angle formed by the three instances
ti, tj and t; in a mini-batch space is formulated as:

ti — tj tp — tj

Vil i) = (g T =l
The triplet-wise relational loss transfers relationships of instance
embedding by penalizing angular differences. Compared with the
pair-wise potential function, the triplet-wise potential function
measures structural similarity in a higher-order space, enabling
more effective relational knowledge transferring.

Total Loss The total loss is therefore formulated as:

L=Leg+MLi+ ALy + ALy, (16)
where LcF is the Cross-Entropy loss between outputs of the teacher
and student network, as defined in Eq. 10 when ¢ adopts Cross-
Entropy. L, £p and £; are various orders of relational distillation

loss defined in Eq. 12, Eq. 13 and Eq. 14, respectively. The 4;, 4,
and A; are weighting hyper-parameters to balance the loss terms.

(15)

3.4 Implementation Details

We build the de-occlusion module with a generative inpainting net-
work using the same architecture as in [57]. In the distillation mod-
ule, we employ a pre-trained VGGFace2 [3] model as the teacher. It
achieves a very high accuracy of 99.53% on the LFW dataset [17] af-
ter alignment. The student network is composed of a ResNet-18 [13]
model with a single embedding layer on top.

Our end-to-end network is implemented based on the deep learn-
ing library Pytorch. In the experiments, we set A, = 1.0,4; = 2.0.
All models were trained with a mini-batch size of 128. The initial
learning rate is Ir = 0.1 and decreases to 0.1 times every 24 epochs.
When sampling tuples of instances for the relational losses, we
simply use all the tuples (pairs or triplets) in the given mini-batch.

4 EXPERIMENTS

In this section, the proposed de-occlusion distillation framework is
systemically evaluated on both synthesized and realistic masked
face datasets. We first introduce the experiment setting, then present
experimental results on two datasets, finally we conduct ablation
studies and discuss the function paradigm of the proposed method.

4.1 Experiment Setting

Datasets Our experiments are carried out on three datasets: Celeb-
A dataset [32], LFW dataset [17] and AR dataset [35].

The Celeb-A dataset consists of 202,599 face images covering
10,177 subjects. Each face image is cropped, roughly aligned by the
position of two eyes, nose, and two mouth corners, and rescaled to
256 X 256 X 3 pixels. We acquired synthetic masked faces via pasting
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Figure 3: Examples of the masks adopted for synthetic
masked faces.

collected masks onto these images, described later. We randomly
split it into training and validation set with the ratio set as 6 : 1.

The LFW dataset consists of 13,233 images of 5,749 identities.
Same preprocessing as Celeb-A was performed to prepare the data.
We used all 13,233 images on LFW to benchmark the results. 6K
pairs (including 3K positive and 3K negative pairs) were selected
to evaluate the performance of masked face recognition.

The AR dataset consists of face images with varying illumina-
tion conditions, expressions, and partial occlusions. Two variations
of occlusions are available in the dataset, sunglasses and scarves,
which makes 1,200 images in total. We followed the same protocol
to prepare the data. For our study, we randomly took an unmasked
face of the same subject, instead of its non-exist original, to send
into the teacher network and provide guidance.

Synthesizing Protocols Considering the deficiency of masked
face datasets, we synthesized masked face images by automatically
pasting mask patterns into face images from Celeb-A [32] and
LFW [17] Dataset. We collected transparent mask images online.
To prevent over-fitting, we followed [10] and divided occlusions
into four categories: Simple Mask (man-made objects with pure
color), Complex Mask (man-made objects with complex textures or
logos), Human Body (face covered by hand, hair, etc.) and Hybrid
Mask (combinations of at least two of the aforementioned mask
types, or one of the aforementioned mask types with eyes occluded
by glasses), and select representative masks for each type. 45 mask
images are employed. Several examples of the extracted masks are
shown in Fig 3. All the masks were rescaled, covering an average
of about % of the face. To improve the generalization ability of the
model, we did data augmentation including flipping and shift.

4.2 Results on Synthetic Masked Faces

In this subsection, we compare the recognition performance for
synthetic masked faces of different models. We trained our end-
to-end de-occlusion model on Celeb-A, then evaluate comparison
accuracy on the LFW dataset. All models extract features of all
6000 face pairs and then computes the cosine similarities between
the face pairs. The accuracy is the percentage of correct prediction,
where the threshold is decided as the one with the highest accuracy.
We trained our network with total loss taking the form as Eq. 16.
Several sotas are also presented and compared. GFC [26], GA [57]
and IDGAN [9] are all state-of-the-art generative inpainting meth-
ods, especially IDGAN is designed and optimized for masked face
recognition problem. We equip them with five high-performance
recognizers, and the results are shown in Fig. 4. Our model trained
with Eq. 16, denoted as OUR-Hard, surpass all combinations.
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Figure 4: Evaluation accuracy of different models on LFW.

Table 1: Rank-1 recognition accuracy on AR Database by several existing recognizers.

AR1: Recognition of faces with glasses (%)

ARZ2: Recognition of faces with scarfs (%)

Occ. RPCA[53] GL[8] GFC[26] GA[57] | Occ. RPCA [53] GL[8] GFC [26] GA [57]
PCA [51] 61.4 64.2 70.0 82.9 88.6 375 32.2 408 72.6 783
GPCA [24] 73.3 71.6 76.6 88.4 92.7 56.2 54.0 60.9 80.3 87.2
LPP [14] 45.7 61.4 59.0 835 90.0 43.0 38.3 47.1 75.9 80.1
SR [54] 59.2 57.3 60.6 85.7 90.3 51.8 477 56.7 79.8 86.4
VGGFace [39]  85.4 845 87.9 91.7 95.9 75.9 79.6 83.5 89.9 92.2
VGGFace2 [3]  88.3 86.7 89.0 94.2 97.0 | 78.2 81.4 85.7 93.1 93.3
SphereFace [29]  87.5 87.2 89.0 93.7 975 | 78.0 79.8 83.9 92.8 93.1
ArcFace [7] 85.5 85.2 87.6 923 95.5 76.4 79.2 82.6 90.2 91.9
OUR - 92.1 93.3 97.2 98.0 - 84.4 86.8 93.3 94.1

During the training process, we noticed that the model converges
stably at the early stages, then gets stuck soon, showing obvious
over-fitting. We leave detailed illustration to Sec. 4.4 and go directly
for refining strategy. With a large reduction in parameters and
change on model structure, it is reasonable to suspect the student
bear considerable instability, especially under perturbation settings
like ours. Directly enforcing the feature to be the same could be
too strict regularization. History researches indicate that soften
knowledge is more efficient to learn [33]. Therefore, we reformulate
the instance-wise relational loss .£; as:

L= )

y; €Y, %;€X

Gt — fig,si — fiq) (17)

where identity-centered feature f;; represents the centroid of iden-
tity features for training images with identity label id:

>N 8y = id)t;
fig=——— (18)
TSN Sy - id)

where N denotes the size of training datasets. In experiments, the
identity-centered features are pre-computed off-line. In this way, we
soften the knowledge of the teacher and enable a stabler knowledge
transfer. The results are shown in Fig. 4 as OUR-Soft.

4.3 Results on Realistic Masked Faces

We then evaluate the proposed method on the AR dataset, where
two variations of occlusions are available. For testing, the masked
faces were divided into two subsets, denoted as AR1 and AR2,
consisting of faces with sunglasses and scarfs, respectively.

We adopted four classic face recognition algorithms and four
deep learning recognition models to test the recognition perfor-
mances on the masked faces and the completed faces. Specifi-
cally, the four recognition algorithms are: 1) PCA [51], the typical
statistic-based recognition algorithm; 2) Gabor wavelet-based recog-
nition (GW+PCA) [24], using features in the transformed domain;
3) locality projection [14], a manifold-based recognition algorithm;
and 4) SR [54], which is a branch of norm-based optimization. The
four state-of-the-art deep learning recognition models include VG-
GFace [39], VGGFace2 [3], SphereFace [29] and ArcFace [7].

We completed faces by two tradition methods RPCA [53] and
GL [8], as well as two sota generative inpainting methods GFC [26]
and GA [57] respectively. All faces are then predicted by all rec-
ognizers above, as comparisons with our de-occlusion distillation
model. The results are shown in Tab. 1, and our method achieves a
higher recognition accuracy. The VGGFace2 and SphereFace model
exhibit relatively milder degradation in masked scenarios among
the baselines. We take this as evidence that data diversity and struc-
tural regularization are beneficial for model robustness.



—e—Lgg-train
—e—Lggtest
LCE+LP+Ll-train
—A— LCE+LD+L‘—test
—a LCE+Lp-train

LCE+LP-1es1

—a—L . +L +Lp+L‘—1rain 4

CET1
—a-Loetly +LD+L‘-leSl
— LCE+L1 +Lp+L‘-train i

LCE+L1 +Lp+L‘-lesl

Figure 5: Loss changes with different loss settings.

4.4 Ablation Study

In this section, we conduct ablation studies to prove efficacy.

Contribution of each loss component. We trained our model
with 1)Cross-Entropy(CE) loss only L¢E, 2) CE loss and pair-wise
relational loss Lcg + Ap.Lp, 3) CE loss, pair-wise and triplet-wise
relational loss Lcg + ApLp + Ar Ly, 4) CE loss, pair-wise, triplet-
wise, and hard instance-wise relational loss Lcg +4;.L; +4p.Lp +
A+ L and 5)CE loss, pair-wise, triplet-wise, and soft instance-wise
relational loss Leg +4;. L] +Ap Ly +As L. Fig. 5 shows the trend of
loss during training in both the training and evaluation set. Testing
accuracy on Celeb-A and LFW share similar trends, and the trend
on LFW is less aligned due to the domain gap. From the figure, we
noticed that CE loss can well stabilize the training process. However,
with CE loss only, the model fails to reach the optima. Our relational
distillation loss in various orders exhibits good collaboration with
CE loss and leads to the best performance eventually.

OUR-Hard vs OUR-Soft. It is worth to note in Fig. 5 that OUR-
Hard trained with Leog + 4;.L; + Ap Ly + A4 Ly shows apparent
over-fitting in later stage, even worse than those trained without
instance-wise loss. With a large reduction in parameters and change
on model structure, it’s reasonable to suspect the student bear con-
siderable instability, especially under perturbation settings like ours.
Directly enforcing the features to be exactly the same could be too
strict. After we soften the instance-wise loss into identity-centered
ensemble loss L7, as defined in Eq. 17, the resulting OUR-Soft
shows more efficient convergence and finally reach the lowest loss.
We believe this discovery is meaningful for more general adaptation
tasks, especially with great domain gaps or severe perturbation.

Choice of completion methods. We then ask whether the
choice of completion methods make a difference. We replace the
face completion model in the de-occlusion module with 1)GFC [26],
2)GA [57] without contextual attention and 3)IDGAN [9], in com-
parison with the adopted 4)GA [57] with contextual attention. We
trained model with Hard (Lcg + 4; L + Ap.Lp + A4.L;) and Soft

Table 2: Comparisons between models adopting different
face completion methods and finetuned ArcFace [7] (%).

GFC GA [57] w/o IDGAN GA [57] w/

[26]  attention [9] attention
ArcFace [7]-finetuned  90.15 91.28 92.52 92.17
OUR-Hard 9277 9293 9312 9458
OUR-Soft 93.60 93.55 93.92 95.44

loss (Lcg + 4i L] + ApLp + A L) and Tab. 2 shows the results
on LFW. Bold and underline denote the first and second highest in
each column, separately. All models trained with Soft loss perform
better than those with Hard loss, which verifies the efficacy of the
softening mechanism. Besides, it’s evident that the performance of
GA [57] with attention stands out alone, while the others are close.
We attribute it to the contextual attention mechanism which allows
the model to focus on the most relevant and informative areas.
Distillation vs Fine-tune. Finally, to prove the efficacy of the
distillation module, we fine-tune the Arcface model [7], which has
a similar size with our student model, on completed faces and make
comparisons. The evaluation accuracy on the LFW dataset is re-
ported in the first row of Tab. 2. Our OUR-Soft model surpasses the
fine-tuned ArcFace model by 3.27%, which suggest that fine-tuning
can hardly come across the semantic gap. Our models instead, learn
to recover the identity features under the guidance of pre-trained
recognizer, and effectively improve the masked face recognition.

5 CONCLUSION

Masked face recognition is a problem of wide prospects for ap-
plications. Despite great efforts and advancements made over the
years, current methods are restrained by incomplete visual con-
tent and insufficient identity cues. In this work, we migrate the
mechanism of amodal perception and propose a novel de-occlusion
distillation framework for efficient masked face recognition. The
model first recovers appearance information via a generative face
completion based de-occlusion module, and then transfers rich
structural knowledge from a high-performance pre-trained gen-
eral recognizor to train a student model. In this way, the student
model learns to recover the missing information both in appearance
space and in identity space. By representing knowledge of existing
high-performance recognition models with structural relations in
various orders, the model is enforced to extract representations
with similar aggregation behaviors with those of the teacher. Exper-
imental results show that the amodal completion mechanism is also
beneficial for deep neural networks, and our proposed de-occlusion
distillation can deal with the masked face recognition task on both
synthetic and realistic datasets. In the future, we will work on the
establishment of amodal perception for computer vision and further
investigation on suitable network architecture.
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