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Pyramid Global Context Network for Image
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Abstract—Haze caused by atmospheric scattering and absorp-
tion would severely affect scene visibility of an image. Thus,
image dehazing for haze removal has been widely studied in
the literature. Within a hazy image, haze is not confined in
a small local patch/position, while widely diffusing in a whole
image. Under this circumstance, global context is a crucial
factor in the success of dehazing, which was seldom investigated
in existing dehazing algorithms. In the literature, the global
context (GC) block has been designed to learn point-wise long-
range dependencies of an image for global context modeling;
however, patch-wise long-range dependencies were ignored. To
image dehazing, patch-wise long-range dependencies should be
highlighted to cooperate with patch-wise operations of image
dehazing. In this paper, we first extend the point-wise GC into
a Pyramid Global Context (PGC), which is a multi-scale GC,
after undergoing the pyramid pooling. Thus, patch-wise long-
range dependencies can be explored by the PGC. Then, the
proposed PGC is plugged into a U-Net, getting an attentive
U-Net. Further, the attentive U-Net is optimized by importing
ResNet’s shortcut connection and dilated convolution. Thus, the
finalized dehazing model can explore both long-range and patch-
wise context dependencies for global context modeling, which
is crucial for image dehazing. The extensive experiments on
synthetic databases and real-world hazy images demonstrate the
superiority of our model over other representative state-of-the-
art models from both quantitative and qualitative comparisons.

Index Terms—Image dehazing, deep learning, global context
modeling, pyramid global context (PGC), dilated residual U-Net
(DRU).

I. INTRODUCTION

Due to the existence of atmospheric particles, such as fog,
haze, rain, dust, and fume in bad weather conditions, outdoor
images capture often suffer from atmospheric absorption and
scattering, leading to contrast loss, color degradation, and
saturation attenuation. In practice, even in a sunny day, the
atmosphere is not absolutely free of any floating particle.
Consequently, the haze still exists in a captured image, espe-
cially for distant scenes [1]. The hazy image would lower the
efficiency of high-level computer vision tasks and applications
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[2], [3], [4], such as object detection, semantic segmentation,
video surveillance, and remote sensing. Therefore, over the
past decades, removing haze from the image, namely image
dehazing, has received significant attention in the computer
vision community.

Dehazing, deraining [5], [6], desnowing [7] and raindrops
removal [8] are closely connected. However, they are caused
by different degradation processes under different weather
conditions, so they follow different physical principles [9]. For
image dehazing, scene depth is crucial for accurate transmis-
sion map estimation and, therefore, efficient image dehazing.
To estimate the depth information, early methods resorted
to auxiliary information, such as polarization [10], multiple
images [11], [12], [13], and existing 3D geographic models
[14]. They are, however, limited by the availability of auxiliary
information. Thus, haze-relevant priors [1] were investigated,
realizing haze removal from a single image without auxiliary
information. Those hand-crafted haze-relevant priors estimate
coarse transmission map t according to the well-received
atmospheric scattering model [1]:

IH(x) = ID(x)t(x) +A(1− t(x)), (1)

where x represents a spatial location; IH and ID are the
observed hazy image and clear scene radiance, respectively;
t is transmission map; A is global atmospheric light. Of
these priors, dark-channel prior (DCP) [1], color-lines prior
[15], color attenuation prior (CAP) [16], difference-structure-
preservation prior [17] and color ellipsoid prior (CEP) [18] are
of patch-wise assumptions, assuming that the haze is constant
in a local patch, while non-local prior (NLP) [19] estimates
transmission map in a non-local manner, assuming that the
degradation is different for every pixel. Although prior-based
methods are usually simple and effective for some scenes, they
may fail in practical scenarios as the prior does not hold.

The primary deep learning-based methods, such as De-
hazeNet (DHN) [20], Multi-Scale CNN (MSCNN) [22] and
All-in-One Dehazing (AOD) [23], have demonstrated great
success of CNN for image dehazing. Trained on large-scale
databases, these methods can extract effective features to
estimate fine transmission directly or K [23] map. However,
these methods still follow the conventional dehazing model as
in Eq. (1) and mostly utilize low-level image features. Con-
sequently, they are unable to effectively learn global context
information of an image, compromising dehazing efficiency.
Profiting from skip-connection or/and density connection, deep
networks (such as Densely Connected Pyramid Dehazing
Networks (DCPDN) [24], Gated Fusion Networks (GFN)
[25] and Enhanced Pix2pix Dehazing Networks (EPDN) [21])

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2021 at 01:18:56 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3036992, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, X 201X 2

(a) Hazy (b) DCP (c) NLD (d) DHN (e) EPDN (f) Our Model

Fig. 1. Dehazing for hazy sky regions (images in the first row) and distant scenes (images in the second row). The last row illustrates the corresponding
zoom-in of the red rectangles labeled in the second row. (a): hazy images. (b)-(f): results of DCP [1], NLD [19], DHN [20], EPDN [21] and our model.

have been proposed by stacking more convolution layers. In
this way, long-range dependencies can be explored to some
extent since the receptive field of convolution becomes larger
as the convolution layer goes deeper than primary learning-
based methods. However, simply stacking convolution layers
is not computationally efficient. Moreover, models that solely
rely on convolutions exhibit limited ability in capturing long-
range dependencies, partially due to difficulties of exchanging
information between distant points [26].

Recent literatures [27], [26], [28], [29] have indicated
that long-range dependencies can improve the performance
of high-level vision tasks. However, they have not yet well
investigated in existing dehazing methods. Fig.1 shows two
cases of hazy images with sky regions (the first row) and
distant scene regions (the second row). The DCP [1] and NLD
[19] remove heavy haze from distant scenes successfully, as
shown in the second row of Fig.1 (b) and (c). However, both
of them yield over-saturation in the sky regions, as shown in
the first row of Fig.1 (b) and (c). In the first row of Fig.1 (d)
and (e), deep learning-based methods of DHN [20] and EPDN
[21] are visually appealing in sky regions; however, they still
contain a small amount of haze in distant scenes as shown
in the second row of Fig.1 (d) and (e). The reason is that,
without an effective long-range dependency modeling, large-
scale context information about some cases (such as the sky
and distant scenes) cannot be sufficiently mined from an input
image.

In this paper, we exploit long-range dependencies among
both points and patches for further profiting image dehazing.
Unlike previous productions [30][31] that resorted to an ad-
ditional network for this purpose, we characterize long-range
dependencies by an effective and lightweight module/block
of global context modeling, namely Global Context (GC)
block [26]. In practice, GC block [26] is usually embedded
into a deep network, such as ResNet [26][32], to realize
global context modeling. Despite its powerful representative
ability, GC block [26] only aggregates pixel-wise features
together to form a global context feature, ignoring patch-wise

dependencies. In fact, patch-wise context dependencies should
be more appreciated in image dehazing. They provide patch-
wise global context information that can be used in patch-
wise dehazing. It has been found that patch-wise operation
could allow image dehazing to avoid over-saturation caused by
the pixel-wise operation of dehazing [33], [34]. Therefore, we
think combining point-wise and patch-wise context modelings
is better than using either of them individually. For this pur-
pose, a new global context modeling block, namely Pyramid
Global Context (PGC) block, is proposed. It is derived from
the GC block [26] undergoing the spatial pyramid pooling
[35], [36], [37], which can thereby learn multi-scale context
dependencies.

We then embed the proposed PGC block into a U-Net,
which is composed of four-stage contracting paths (Encoder)
and expansive paths (Decoder). Each encoder/decoder block
consists of a down-scale/up-scale convolutional layer and a
dilated residual bottleneck (DRB) block. DRB is a small slice
of the dilated residual network [38]. This network is built on
a CNN, replacing conventional convolution by a dilated one,
and also importing ResNet’s shortcut connection [32], so it
inherits the merits of both dilated convolution and ResNet. We
abbreviate the final network as “PGC-UNet”, dilated residual
U-Net as “DRU” in the following content. In this PGC-UNet,
U-Net infrastructure can retain localization accuracy with skip-
connections, which concatenate feature maps of the Encoders
and the Decoders; meanwhile, PGC can improve the ability
of global context modeling. Additionally, dilated convolution
can enlarge the receptive field of convolution.

The big difference between the proposed PGC-UNet and
related works lies in that patch-wise haze-relevant feature, and
therefore patch-wise operator of dehazing is learned by using
a PGC block, which is consistent with the fact that haze is
patch-wise instead of pixel-wise. In PGC block, long-range
dependencies of multiple scales are explored for global context
modeling. Contributions of this work can be summarised as
follows:

- A PGC block is proposed, exploring long-range de-
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pendencies among not only points but also patches. It
provides an efficient solution to non-local/global context
modeling.

- A new neural network is proposed for image dehazing,
plugging PGC/GC blocks into a U-Net, getting an atten-
tive U-Net, which is further optimized by the DRB block.

- Extensive experiments and ablation studies are performed
on public databases to conclude the best solution of image
dehazing, which could guide practical application and
provide references to the peers.

II. RELATED WORKS

A. Deep Learning-based Single Image Dehazing

Most deep learning-based methods seek mapping relation
between image features and parameters in (1). Earliest meth-
ods, including DHN [20], MSCNN [22], AOD [23], were
designed as trainable end-to-end CNN-based architectures for
medium transmission (or a K map in AOD [23]) estimation.
Many works such as DCPDN [24], Iteration-Wise Priors (IWP)
[39], and Dual-Path in Dual-Path Networks (DPDPN) [40],
tended to strictly follow the physics-driven scattering model,
by jointly estimating the transmission map t, atmospheric
light A and clear scene radiance ID. However, these methods
heavily rely on training database and accurate estimation of t
and A, which may be greatly limited in real-world scenarios.
Unlike these methods, blind learning models disentangles
image dehazing from the physical scattering model, no need
to estimate t or/and A. For example, GFN [25] produces a
haze-free image via fusing dehazed patches from three feature
maps. EPDN [21] implements a pyramid pooling enhanced
pix2pixHD [41] model, where the adversarial learning is
repeated to contribute a powerful generator which can directly
generate a haze-free image from a hazy one. GridDehazeNet
(GridDN) [42] proposes a multi-scale estimation on a grid
network [43], and embeds a channel-wise attention block into
a network. However, all these methods do not perform well
for capturing long-range dependencies, partially due to the
difficulties of exchanging information among points far away
from each other.

B. Global Context Modeling

1) Non-Local (NL) Block: To extract the global context of
a visual scene, previous efforts mainly stack more convolution
layers. However, increasing convolution layers is not compu-
tationally efficient and hard to optimize [27]. The NL block
[27], as shown in Fig.2 (a), is proposed to model long-range
dependencies using one layer, via self-attention mechanism
[44]. Denote input and output features as X ∈ Rh×w×c and
Y ∈ Rh×w×c, where h, w, and c represent image height,
width and channel dimensions. The query feature map Q, key
feature map K and value feature map V are formed by three
1× 1 convolutions Wq , Wk and Wv

Q = Wq(X), K = Wk(X), V = Wv(X); (2)

where Q ∈ Rh×w×c′ , K ∈ Rh×w×c′ , V ∈ Rh×w×c, c′ is the
number of channels of output feature maps. Then, c′ feature
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Fig. 2. Non-local (NL) block, global context (GC) block [26]. (LN is the
short name of Layer Normalization, h, w and c are the height, width and
channel of the input feature maps, respectively, and r is the bottleneck ratio.)

maps are flattened to a vector of the size n × c′, where n =
hw represents the total number of the spatial locations. The
output of NL block [27] is

Y = Wz(Nn(Q×KT )× V ) +X, (3)

where Wz is a 1 × 1 convolutional layer. In [27], it chooses
softmax as the normalizing functionNn which has been proved
to work well in many tasks [27], [26]. Eq. (3) is applied to each
pair of positions. There are totally n2 pairs, resulting in O(n2)
memory complexity and O(c′n2) computational complexity.

The memory and computational costs of NL attention grow
quadratically with the resolution of the input. To overcome this
drawback, Region-Level Non-Local (RLNL) [45][46] firstly
divides input feature map into a grid of regions/patches. Then,
it models long-range attention separately only within each
region. Thus, this method cannot directly learn long-range
dependencies across different regions. Asymmetric Non-Local
Networks (APNL) [47] selects (1, 3, 6, 8) to be output anchor
points of pyramid spatial pooling, ignoring point-wise context
dependencies. It cannot give sufficient feature statistics about
global context information to learn accurate haze-relevant
features.

2) Global Context (GC) Block: Unlike non-local (NL)
block [27] which performs global context modeling for each
query position/point, surprisingly, GC block [26] found that
global context modeled by NL block are almost the same
for different query positions within an image, indicating only
query-independent dependency is learned [26]. In addition, the
1 × 1 convolution Wv in NL block is removed and replaced
by a bottleneck transform module in GC block as shown in
Fig.2(b). This process can provide us a lightweight Squeeze-
and-excitation (SE) block [48]. The bottleneck transform mod-
ule consists of (1) a 1 × 1 convolution Wv1 to compress
the number of channels from c to c/r(r > 1), (2) a layer

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 10,2021 at 01:18:56 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3036992, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, X 201X 4

Fe
at

u
re

 E
xt

ra
ct

o
r

C

P
yr

am
id

 P
o

o
lin

g
M

o
d

u
le

global skip-connection

global skip-connection

PGC-UNet

D
e

C
o

n
vo

lu
ti

o
n

C

0F 1F 2F 3F

HI DI GI

concatenation  C Training Objective

Fig. 3. Architecture of the proposed dehazing network. PGC: pyramid global context block. IH , ID and IG represent hazy image, dehazed image and the
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normalization (LN), (3) a nonlinear function (ReLU) and (4)
a 1 × 1 convolution Wv2 to restore the number of channels
from c/r to c. The output of GC block [26] is

Y = T (Nn(K̄)T × X̄) +X. (4)

where the reshaped key features are represented by K̄ ∈ Rn×1,
X̄ ∈ Rn×c is the reshaped X , T is the bottleneck transform
module (as shown in Fig.2 (b)), Nn is the normalizing
function.

Despite good representation, the context modeling block in
GC block [26] only aggregates the features of all positions
together to form a global context feature. It is unable to learn
the dependencies between patches effectively. Thus, to boost
the abilities to learn patch-wise long-range dependencies on
different scales, a simple yet effective global context modeling,
namely PGC block, is proposed in this work. PGC inherits the
merits of GC block [26] with lightweight and efficient point-
wise long-range dependency modeling; additionally, it boosts
patch-wise long-range dependency modeling.

III. PROPOSED DEHAZING METHOD

A. Framework

Let IH and ID denote input hazy image and output dehazed
image, respectively. Image height, width and channel are
denoted by H , W and C (C = 3 for color image). The
proposed network framework is shown in Fig. 3, which mainly
consists of a feature extractor, a PGC aided U-Net module
(PGC-UNet), a deconvolutional layer, and a pyramid pooling
module.

he feature extractor aims to extract low-level feature F0

from the hazy image. It contains one convolutional layer with
kernel size is 7×7 and stride 1. F0 is then fed into the PGC
aided U-Net (PGC-UNet), and the output is F1. The details of
PGC-UNet will be introduced in subsection III-C.

We then use a deconvolutional layer, with kernel size is
7×7, to expand the output of the PGC-UNet to the original size
of hazy image IH and compress channels from 64 to 32. The
output denoted as F2, is further concatenated with hazy image
IH , and we obtain the feature maps F3, as shown in Fig.3.
Note that we use long-rang global skip-connections twice, i.e.,
C[F1, F0] and C[F2, IH ], where C[ ] denotes the concatenation
operation. These global skip-connections can transmit low-
level features to F3. In addition, they enable the mechanism
of residual learning, facilitating gradient back-propagation of
the deep network.

Finally, inspired by [36], [24] and [21], F3 is fed into a
pyramid pooling module to make sure the details of features
from different scales are embedded in the final dehazed
image ID. Feature maps on different scales provide different
receptive fields, which helps to reconstruct an image on various
scales.

B. Pyramid Global Context (PGC) Block

From our investigation, we found that global context model-
ing is crucial for haze-relevant features learning. Original GC
block [26] simplifies non-local block [27] by explicitly using a
query-independent attention map for all query positions/points.
It is point-wise, so patch-wise dependencies among patches are
ignored. We think that this point-wise spatial attention cannot
accord with the well-known patch-wise prior in previous works
[1]. The pixel-wise prior based methods, such as Non-local
prior [19], commonly lead to over-saturation in recovered
image. The main reason is that, in an image patch where the
depth/transmission is constant, pixel-wise approaches estimate
transmission per pixel, leading to over-estimation of haze from
its actual value [33].

Therefore, in this paper, we aim to enhance the GC block
[26] to learn both point-wise and patch-wise long-range haze-
relevant attentions. We propose to utilize pyramid spatial
pooling to sample sparse anchor point for each region/patch
with pooling sizes `i = 1/2i, i ∈ {0, 1, 2, 3}, as shown in
Fig.4. The pooled feature maps X`i is expressed as:

X`i = P`i(X) ∈ Rhi,wi,c, i ∈ {0, 1, 2, 3}, (5)

where P`i(·) is the pyramid spatial pooling operator with
pooling size `i; hi, wi and c represent height, width and
channel dimensions of X`i , and we have hi = h`i and
wi = w`i.

Then, for each pooled feature maps X`i , we use the same
context modeling module in GC block [26] (see Fig.4) to
mine long-range dependencies between the anchor points. The
output of GC is denoted by K`i = Wk`i(X`i) at scale i. Given
a set of weights {α`i , i ∈ {0, 1, 2, 3}}, the outputs of GC at
four scales are concatenated to form the output attention map
of PGC:

X̄att = Nn(C[K̄`i ; i ∈ {0, 1, 2, 3}]
T )× C[α`iX̄`i ; i ∈ {0, 1, 2, 3}],

(6)
where K̄`i ∈ Rni×1 (ni=hi×wi), Wk`i is the 1×1 convolution
at scale i, X̄`i ∈ Rni×c is reshaped from X`i , Nn is the
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normalizing function, which is softmax function here. C[ ]
denotes the operation of concatenation. α`i is weight at scale
i, and in our work, it is defined as:

αi = (
1

`i
)2, i ∈ {0, 1, 2, 3}. (7)

Note that the pooling size of `0=1/1 is the same as the
basic GC [26], while other scales learn patch-wise long-range
dependencies of different scales.

The final output of the PGC block is:

Y = T (X̄att) + X (8)

where T represents a bottleneck transform module as shown
in Fig.4. PGC block is lightweight and effective for long-range
dependency modeling. For dehazing purpose, it is then plugged
into a U-Net with dilated convolution and ResNet’s shortcut
connection to form the final model, namely PGC-UNet, which
will be introduced in subsection III-C.

C. PGC aided U-Net (PGC-UNet)

U-Net [49] is equipped with skip-connection, which directly
propagates features of a lower layer to a higher layer, skipping
the layers between them, which endows it with a good
capability of image restoration. Thus, U-Net is selected to be

the backbone of the proposed PGC-UNet. In this paper, we
first explore PGC for global context modeling. Then, the PGC
block is plugged into a U-Net, getting the proposed PGC-
UNet. It should be pointed that here the U-Net is a dilated
residual optimized one [38]. The framework of the proposed
PGC-UNet is shown in Fig.5, which mainly consists of three
parts: contracting path (encoder), ResNet Groups (RNGs), and
expansive path (decoder).

Contracting path. The contracting path (encoder path)
consists of four stages, i.e. Ej(j=0, 1, 2, 3) shown in
Fig.5(b). Each encoder block consists a down-scale lay-
er (Cj(j=0, 1, 2, 3), downscaling spatial resolution with
stride s=2, and doubling the number of feature maps) fol-
lowed by a basic Dilated ResNet Bottleneck (DRB) [38]
(DRj(j=0, 1, 2, 3)). In addition, the proposed PGC module is
embedded between them for global context modeling. Here,
DRB block is used because dilated convolution [50] can
provide enlarging receptive field without need of downscaling
image spatial resolution. We use the same dilated factors (d=2)
for all encoder blocks.

ResNet groups (RNGs). As shown in Fig.5(a), the feature
transformation module in the proposed network consists of
several basic ResNet [32] Groups (RNGs). RNGs are equipped
with shortcut connections of ResNet, so it allows us to train a
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deeper network which has the better capability of representing
very complex functions.

Expansive path. The expansive path (decoder path) consists
of four stages, i.e. Dj(j=0, 1, 2, 3) shown in Fig.5 (c). Each
decoder block is similar to the corresponding encoder block,
i.e., a PGC block followed by a DRB block. The difference lies
in that each decoder has two layers to merge the aggregated
features: the first layer is a transposed convolution used to
expand the resolution of the concatenated features and halve
the number of channels; the second 1×1 convolution further
halves the number of channels, so that the output has the same
number of channels with the one of the encoders in up one
stage.

It should be pointed that we only plug the PGC block
into the first stage of encoder/decoder, i.e., E0 and D0, as
shown in Fig.5 (a). This is mainly because the PGC module
is most efficient at the largest resolution. Its efficiency declines
gradually going along with the increase of stage since feature
maps are accordingly down-scaled smaller and smaller. The
GC block [26] can be seen as a special form of the PGC with
a single pooling size of 1/2.

D. Training Objective

The optimization objective of the proposed network is
defined as following:

L = λganLgan + λfmLfm + λssimLssim + λl1Ll1, (9)

where Lgan is the adversarial loss, Lfm is the feature matching
loss, Lssim is the SSIM loss, and Ll1 is the L1 loss.

Adversarial Loss: Denote the ground truth by IG. In our
work, the adversarial loss of conditional GAN is defined as
below:

Lgan = arg min
G
{ max

D1,D2

{
∑
k=1,2

(EIH ,IG [log Dk(IH , IG)]

+EIH [log(1− Dk(IH , ID))])}},
(10)

where G is our dehazing model, and we have ID = G(IH); Dk

(k=1,2) are the discriminators. E represents the mean operation
on a batch of training samples. It should be pointed out that a
two-scale discriminator is used here as shown in Fig. 6, where
each input image and its half sampling version respectively
undergo two different discriminators with the same network
structure, but the different size outputs. It has been proved
multi-scale discriminator has good property for guiding the
generator to generate images from coarse to fine granularity
[21]. In addition, the discriminator adopts the concept of
convolutional “PatchGAN [51] which means that each image
is divided into small patches (e.g., 8× 8) rather than a whole
for discriminating real/false (real: positive or false: negative).
The two scales of the discriminator have the same patch size,
so they output a H/8 × W/8 and a H/16 × W/16 binary
matrices where “0” and “1” indicate the probability of each
patch being real or false. From Fig. 6, two mean square errors
(MSEs) are computed for the two scales independently, and
then combining them together gives the final loss of the two-
scale discriminator.
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Fig. 6. Architectures of multi-scale discriminators. Note that, we omit the
hazy inputs of the discriminators D1 and D2 to simplify the illustration.

Feature Matching Loss: Feature matching addresses the
instability of GAN by specifying a new objective for the
generator that prevents it from overfitting on the current
discriminator.

Lfm = min
G

EID,IG

∑
k=1,2

Z∑
z=1

1

Nz
(‖ Dz

k(ID)− Dz
k(IG) ‖1),

(11)
where Z is the total number of layers used for feature
extraction, Nz is a number of elements in each layer, Dz

k is the
operator of the feature extraction of the z-th layer in Dk. The
adversarial loss together with feature matching loss is used to
make the GAN module learn global information and recover
image structure by using multi-scale features.

SSIM Loss: Since human eyes are the final judger for
evaluating the efficiency of a dehazing algorithm, measuring
image quality from perspective of human visual system (HVS)
is desirable in image processing tasks. Therefore, SSIM, which
has good correlation with HVS, with simple formulas and easy
implementation, is incorporated into loss function as:

Lssim = 1− EID,IGSSIM(ID, IG), (12)

where SSIM(·) is the SSIM of the paired images.
L1 Loss: It facilitates the feature selection in the model

optimization, and it is defined as:

Ll1 = EID,IG ‖ ID − IG ‖1 . (13)

IV. EXPERIMENTS

A. Database

For training our model, we collect the samples from the
databases of O-HAZE [52], I-HAZE [53], and RESIDE [54] to
form a mixed training database, as demonstrated in Table I. Be-
sides, images from O-HAZE [52] and I-HAZE [53] are divided
into small patches and resized to the same size (512×512) to
be training samples, as shown in Fig.7. Since the O-HAZE [52]
and I-HAZE [53] provide real hazy images and their haze-
free images, samples from these two databases account for
a larger proportion in our training database. RESIDE [54] is
widely adopted as the benchmark database in many dehazing
works [4], [21], [42] due to its large scale and diverse image
contents. The RESIDE [54] contains synthesized hazy images
in Indoor Training Set (ITS) and Outdoor Training Set (OTS)
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TABLE I
MIXED TRAINING AND TESTING DATABASES.

Training Database Testing Database

O-HAZE I-HAZE BESIDE-OTS O-HAZE I-HAZE SOTS(outdoor) Middlebury HazeRD Real-World

Number 5110 3982 5000 Number 587 300 350 23 70 109

resized to
512x512

…  …

1 5 13 61

Fig. 7. Patch-based training strategy on O-HAZE [52] and I-HAZE [53]
databases. Each sample is equally divided into 1, 5, 13, 25, 41 and 61 patches,
and further resized to 512×512.

databases. In our mixed database, 5000 samples from the OTS
database are included.

To demonstrate generalization ability of our model, we
test it on several databases which have no overlap with
the training database, including O/I-HAZE [52][53], SOTS
(outdoor) [54], Middlebury [55], HazeRD [56] and real-world
hazy images. HazeRD [56] contains 14 haze-free images of
real outdoor scene and corresponding depth maps. For each
image, we synthesize 5 hazy images with fixed atmospheric
light A = [0.76, 0.76, 0.76] and different scattering coefficients
β = {0.05, 0.1, 0.2, 0.5, 1}. Moreover, for comparisons on
real-world images, we collect 109 hazy images mainly from
[25] and [57].

B. Implementation Details

The proposed model is developed on PyTorch deep learning
package. It is trained on our training database with 14,092
512 × 512 images from O-HAZE [52], I-HAZE [53] and
OTS [54] databases. During training, we adopt ADAM [58]
as the optimization algorithm with a batch size of 6. The
initial learning rate is set to 0.0002 for both generator and
discriminator, where the exponential decay rates are set as
(β1, β2)=(0.6; 0.999). Following [59], [60], [61], we use in-
stance normalization layer [62] instead of batch normalization
[63] in our network except GC block [26] and PGC block.
According to (7), for all of the comparison experiments,
we set the weight α=[1, 4, 16, 64] for levels (`0=1, `1=1/2,
`2=1/4, `3=1/8), respectively (i.e. the PGC-UNet−α64 model
mentioned in the subsection IV-E). The parameters of our
hybrid loss function are set as (λgan, λfm, λssim, λl1)=(0.001,
0.15, 1, 1). For more details, please access the source codec
via https://github.com/phoenixtreesky7/PGC-DN.

C. Performance Comparisons with State-of-the-art Methods

In this subsection, extensive experiments are conducted to
verify the effectiveness of our proposed model, compared

with state-of-the-art methods of prior-based and deep learning-
based methods, including DCP [1], Multi-Scale Fusion (MSF)
[64], CAP [16], NLP [19], DHN [20], MSCNN [22], GFN
[25], EPDN [21] and GridDN [42].

1) Evaluations on Synthetic Databases:
First, we evaluate the proposed model on synthetic hazy

images which are selected from O/I-HAZE [52], [53], SOTS
(outdoor) [54], Middlebury [55], HazeRD [56] databases, as
shown in Table I. We strictly follow the author’s recom-
mendations in their papers for performance comparisons. The
learning-based methods pre-trained testing models are down-
loaded from their open sources. To quantitatively evaluate
our model, we employ the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [65], and feature similarity index
for color image (FSIMc) [66]. Since the FSIMc uses the phase
congruency, gradient magnitude, and chromatic features to rep-
resent complementary aspects of image visual quality beyond
the SSIM. We also employ the Color Naturalness Index (CNI)
[67][68][69][70] to evaluate the color quality of the dehazed
image. In CNI, the naturalness of the reproduced image is
defined as the “degree of correspondence between human
perception and reality world” [68][69]. In our experiments,
we follow the same set of CNI in [68].

Comparisons on the O-HAZE database. Fig.8 (1) shows
the qualitative comparisons on O-HAZE [52] database. DCP
[1] and NLD [19] tend to cause blur and color distortions,
e.g., grassland in Figs.8 (1-b) and (1-c). AOD [23] and EPDN
[21] with fine details, appear more visually pleasant than those
of NLD [19], MSCNN [22] and GridDN [42]. However, the
color is distorted in Figs.8 (1-f) and (1-g) compared to ground
truth. Our model achieves the best visual quality on outdoor
database O-HAZE [52], as shown in Fig.8 (1-i). Table II also
reveals that the best PSNR, SSIM, FSIMc and second best
CNI on O-HAZE database are achieved by our model.

Comparisons on the SOTS database. From Fig.8 (2), it
can be observed that all algorithms have good visual percep-
tion on SOTS [54] database. However, MSCNN [22], AOD
[23] and GridDN [42] remains haze at distant scenes. The
proposed model has pretty good visual perception as shown
in Fig. 8 (2-i). From Table II, DHN [20], EPDN [21], GridDN
[42] and our model obtains the top four highest scores of the
four metrics. The GridDN [42] achieves the best SSIM score,
which is 0.014/1.4% SSIM larger than our model. With respect
to PSNR, our model outperforms the GridDN [42] by 0.49 dB.
Regarding CNI metric, our model is also the best among all
compared algorithms.

Comparisons on the HazeRD database. To further validate
the robustness of our model to different intensity of haze, we
test it on HazeRD [56] database. Figs.8 (3) and (4) illustrate
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(1) O-HAZE

(2) SOTS

(3) HazeRD

(4) HazeRD

(5) I-HAZE

(6) Middlebury

(a) Hazy (b) DCP (c) NLD (d) DHN (e) MSCNN (f) AOD (g) EPDN (h) GridDN (i) Our Model (j) GT

Fig. 8. Qualitative results of synthetic image dehazing. (a) is the hazy image. (b)-(i) are the results of DCP [1], NLD [19], DHN [20], MSCNN [22], AOD
[23], EPDN [21], GridDN [42] and our model. (j) is the ground truth.

TABLE II
PERFORMANCE COMPARISONS IN TERMS OF AVERAGE PSNR, SSIM, FSIMC, CNI EVALUATIONS ON FIVE SYNTHETIC DATABASES.1

Database Metric DCP NLD DHN MSCNN AOD EPDN GridDN Our Model2 Our Model-RESIDE3

PSNR 16.520 15.148 16.270 17.142 14.954 18.351 17.105 24.907 18.540
O-HAZE SSIM 0.332 0.335 0.383 0.374 0.282 0.505 0.377 0.773 0.513

FSIMc 0.979 0.976 0.979 0.982 0.974 0.982 0.971 0.990 0.983
CNI 0.782 0.814 0.818 0.811 0.787 0.901 0.813 0.892 0.850

PSNR 18.051 16.853 23.335 19.133 20.198 22.524 28.281 28.780 28.613
SOTS SSIM 0.604 0.901 0.901 0.852 0.887 0.874 0.970 0.956 0.951

FSIMc 0.992 0.985 0.997 0.994 0.990 0.996 0.998 0.999 0.999
CNI 0.880 0.855 0.875 0.880 0.850 0.885 0.853 0.890 0.876

PSNR 15.602 15.066 15.672 15.773 15.629 15.792 15.364 17.037 16.477
HazeRD SSIM 0.656 0.607 0.622 0.637 0.614 0.598 0.675 0.696 0.649

FSIMc 0.978 0.973 0.978 0.975 0.973 0.978 0.970 0.980 0.980
CNI 0.860 0.809 0.860 0.864 0.902 0.900 0.836 0.889 0.864

PSNR 14.835 14.929 16.572 17.061 15.009 16.325 16.057 26.985 18.328
I-HAZE SSIM 0.429 0.567 0.572 0.547 0.582 0.622 0.629 0.889 0.657

FSIMc 0.968 0.968 0.974 0.974 0.961 0.974 0.963 0.985 0.978
CNI 0.850 0.857 0.853 0.853 0.839 0.882 0.849 0.929 0.876

PSNR 13.978 13.873 15.965 14.203 13.321 14.493 12.523 13.904 13.259
Middlebury SSIM 0.695 0.743 0.798 0.774 0.755 0.701 0.761 0.714 0.745

FSIMc 0.969 0.968 0.970 0.971 0.967 0.970 0.962 0.968 0.967
CNI 0.902 0.906 0.927 0.914 0.925 0.921 0.915 0.920 0.913

Total PSNR 16.473 15.521 18.161 17.525 16.354 18.791 19.639 25.791 20.943
(1330 SSIM 0.449 0.558 0.582 0.559 0.535 0.637 0.612 0.842 0.672

samples) FSIMc 0.980 0.976 0.983 0.983 0.975 0.983 0.976 0.990 0.986
CNI 0.829 0.836 0.845 0.843 0.823 0.893 0.835 0.900 0.865

1 The bold and underline values indicate the best and second-best results.
2 Our model trained on mixed databases (as shown in Table I).
3 Our model trained only on the RESIDE-OTS database.
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(a) Input (b) DCP (c) MSF (d) CAP (e) NLD (f) DHN

(g) MSCNN (h) AOD (i) GFN (j) EPDN (k) GridDN (l) Our Model

Fig. 9. Qualitative results of real-world image dehazing. (a): hazy image. (b)-(k): results of DCP [1], MSF [64], CAP [16], NLD [19], DHN [20] and MSCNN
[22], AOD [23], GFN[25], EPDN [21] and GridDN [42]. (l): restored images of our model.

two input images that are coming from the same scene but
with different haze-levels. DCP [1] generates halo artifacts on
the wall of the house. DCP [1] and NLD [19] suffer from color
distortion on the house. Other learning-based methods could
keep accurate color and structure, as shown in Figs.8 (3-d) to
(3-h). However, it can be found that the distant houses are not
restored clearly by checking Figs.8 (4-d) to (4-h). Our model
performs almost the same over these two different haze-levels,
as shown in Figs. 8 (3-i) and (4-i), indicating the robustness
to different haze-level. This conclusion can also be verified by
Table II, where our method performs the best on the metrics
of PSNR, SSIM, and FSIMc.

Comparisons on the I-HAZE database. As shown in Fig.8
(5-i), our model achieves the best visual quality on I-HAZE
[53] database. MSCNN [22], AOD [23] and GridDN [42] fail
to remove haze effectively from Figs.8 (5-e), (5-f) and (5-h).

The other four methods of DCP [1], NLD [19], DHN [20] and
EPDN [21] yield overly-enhanced glass and blackboard. The
quantitative evaluations on I-HAZE [53] shown in Table II
demonstrate that, our method surpass the second best method
(except for our model trained on the RESIDE database) by
a large margin of 9.924 dB, 0.26 SSIM, 0.011 FSIMc, and
0.047 CNI scores.

Comparisons on the Middlebury database. Fig. 8 (6)
shows the comparisons of all algorithms on Middlebury [55]
database. We can find that DCP [1] and NLD [19] are
vulnerable to white objects. This flaw is commonly associated
with prior-based methods (including DCP and NLD), which
cannot well distinguish between white objects and real hazes.
As shown in Figs.8 (6-b) and (6-c), the white wall and
umbrella are over-enhanced, resulting in unreal color. This
problem is alleviated by learning-based methods [20], [22],
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TABLE III
PERFORMANCE COMPARISONS IN TERMS OF AVERAGE BCEA AND CNI ON REAL WORLD OUTDOOR IMAGES (BOLD AND UNDERLINE NUMBERS

INDICATE THE BEST AND SECOND-BEST RESULTS.)

Indicators DCP MSF CAP NLD DHN MSCNN AOD GFN EPDN GridDN Our Model

BCEA - er 1.025 1.018 0.724 1.250 0.713 0.757 0.833 0.661 1.026 0.639 1.070
BCEA - g 1.720 1.905 0.995 1.845 1.192 1.447 1.401 1.494 1.672 1.239 1.807
BCEA - sr 0.008 0.004 0.028 0.024 0.015 0.011 0.007 0.004 0.000 0.001 0.000

CNI 0.817 0.820 0.807 0.793 0.797 0.802 0.776 0.839 0.853 0.808 0.861

[25], [21], [42]. Our method also successfully refrains from
over-saturation on white objects, as shown in Fig.8 (6-i). From
Table II, DHN [20], MSCNN [22] and AOD [23] perform
better than our model with respect to PSNR, SSIM and FSIMc.
The reason is that they all were trained on indoor NYU2
[71] and/or Middlebury [55] databases where hazy images are
artificially synthesized from atmospheric scattering model (1),
while our training database does not contain indoor samples.

Quantitative comparisons on all synthetic databases. In
Table II, the last row gives performance comparisons overall
testing images. It can be observed that our model performs
the best in terms of PSRN, SSIM, and FSIMc metrics, with
6.152dB PSNR improvement beyond the second best algorith-
m, namely GridDN [42], 0.205 SSIM and 0.007 FSIMc im-
provements beyond the second best algorithm, namely EPDN
[21]. Additionally, our model obtains the highest CNI scores,
indicating the method yield more natural and vivid colors.

2) Our Model Trained on RESIDE Database:
For fair comparisons, we further retrained our model only

on the RESIDE database, which was used in EPDN [21]
and GridDN [42]. The testing results are reported in the
column of “Our Model-RESIDE” of Table II. It can be found
that our model gets the second-best results of PSNR, SSIM,
and FSIMc on both O-HAZE and I-HAZE databases, better
than EPDN [21] and GridDN [42]. Experiments on SOTS
[54] and HazeRD [56] databases demonstrate that our model
outperforms EPDN and GridDN with respect to the PSNR and
FSIMc, while the SSIM and CNI are comparable, with less
than 2% SSIM and 4% CNI drops on both databases. Finally,
on the dataset containing all of these five synthetic databases,
our model is better than EPDN and GridDN in terms of all
metrics except CNI.

3) Evaluation on Real-world Database:
Quantitative comparisons on all synthetic databases. In

Table II, the last row gives performance comparisons overall
testing images. It can be observed that our model performs
the best in terms of PSRN, SSIM, and FSIMc metrics, with
6.152dB PSNR improvement beyond the second best algorith-
m, namely GridDN [42], 0.205 SSIM and 0.007 FSIMc im-
provements beyond the second best algorithm, namely EPDN
[21]. Additionally, our model obtains the highest CNI scores,
indicating the method yield more natural and vivid colors.

Qualitative Comparisons. Fig. 9 shows comparisons a-
mong all tested algorithms on real-world hazy images. The
prior-based methods, DCP [1] and CAP [16], remove haze
effectively. However, the dehazed images of DCP [1] suffer
from over-enhanced visual artifacts in the sky regions, as

shown in the third images of Fig.9 (b); the CAP generally
yields over-saturation as shown in Fig.9 (c). The fusion method
MSF [64] generates images of bright color, yet remains haze
at distant scenes. NLD [19] achieves better visual quality than
the previous methods [1], [64], [16], with plausible details.
However, it leads to over-saturation, e.g., the clothes and sky
regions in the third image of Fig.9 (e).

We also compare our model with the widely developed
deep learning-based dehazing methods. Generally, learning-
based methods outperform prior-based methods. AOD [23]
and GridDN [42] avoid over-enhanced problem generally.
However, they remain a small amount of haze in some regions.
Although MSCNN [22], DHN [20] and GFN [25] have better
visual quality than AOD [23] and GridDN [42], they have
slight color distortion, e.g., the clothes of the boy in the third
image of Fig.9 (g) and the crowds in the fourth images of
Figs.9 (f) and (k). EPDN [21] performs better than previous
methods, however, like most of deep learning-based methods,
it produces insufficient dehazing in distant scenes as shown in
the second image of Fig.9 (j). By contrast, our model recovers
richer and more saturated colors, and effectively remove the
haze in distant scenes, as shown in Fig.9 (l).

Quantitative Comparisons. We further use a bind contrast
enhancement assessment (BCEA) [72] to evaluate the effec-
tiveness of our model quantitatively. The BCEA consists of
three indicators: the rate of edges newly visible er, the geomet-
ric mean of normalized gradients g, and the rate of saturated
(black or white) pixels sr. The first two indicators evaluate
the ability of edge and contrast restoration, respectively. The
sr is indispensable to evaluate the degree of over-enhanced.
A good dehazing algorithm should get higher er and g, and
lower sr at the same time.

The average BCEA indexes are listed in Table III. It can
be observed that prior-based methods achieve better (larger)
er and g. However, their sr are commonly higher (worse)
than 0.008 (except MSF [64] with sr=0.004). For example,
the NLD [19] gets the best er and the second best g, its sr is
the second worst, indicating that the dehazed results are highly
over-enhanced. The CNN-based methods, DHN [20], MSCNN
[22] and AOD [23] are inferior to other methods with respect
to BCEA. The reason may lie in that these three methods
are trained on indoor images, leading to low efficiency on
real-world images. By contrast, our model achieves better
visual quality and the top three scores of the BCEA, thanks to
global context modeling. GFN [25], EPDN [21], GridDH [42]
successfully refrain from over-saturation and halo artifacts, so
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Fig. 10. Ablation studies: qualitative comparisons of RU, DRU, GC-UNet, PGC-UNet-α1 and PGC-UNet-α64 at 50th epoch.

TABLE IV
SUBJECTIVE IMAGE QUALITY ASSESSMENT.

Indexes AOD EPDN GridDN Our Model

naturalness 3.360 3.923 3.373 4.030
contrast 3.315 3.870 3.298 3.965
colorful 3.118 3.870 3.255 3.950

they are with very small sr, however, their er and g are less
(worse) than ours.

We further calculate the Color Naturalness Index (CNI) [68]
for real-world dehazing results. Table III gives the average
CNIs of different methods tested on 109 real-world samples.
As we can find, our model obtains the highest CNI, indicating
that our results possess more faithful color and richer details.

D. Subjective Image Quality Assessment

We also conduct a subjective image quality assessment
(IQA) to evaluate the proposed model, comparing to other
deep learning-based methods, including AOD [23], EPDN
[21], and GridDN [42]. We randomly selected 5, 5, 15, 3,
3, and 19 samples from O/I-HAZE [52], [53], SOTS [54],
Middlebury [55], HazeRD [56], and real-world testing databas-
es, respectively, composing of a dataset of 50 samples for
subjective IQA. Eighteen observers were asked to give their
opinion about overall quality of each image with respect to
the following three aspects:

- “naturalness”: image looks natural after haze is effec-
tively removed;

- “contrast”: image content and edges are clear with good
contrast;

- “colorful”: image looks visually pleasant without over-
saturation.

The evaluation is reported on the five-point scale: “bad”: 1;
“poor”: 2; “fair”: 3; “good”: 4; and “excellent”: 5. A single-
stimulate method (ACR) [?] is used in subjective IQA, in
which the observers were asked to rate image quality on one of
the five scales. All of the test images are displayed randomly.
Average scores on overall image quality, “naturalness”, “con-
trast” and “colorful” are summarized in Table IV. It can be

TABLE V
ABLATION STUDIES IN TERMS OF PSNR, SSIM AND CNI.

Module of E/D Weight of PGC PSNR SSIM CNI

RU 24.525 0.929 0.870
DRU 24.621 0.929 0.874

GC-UNet 24.771 0.944 0.889
PGC-UNet-α1 [1, 1, 1, 1] 24.817 0.946 0.897

PGC-UNet-α64 [1, 4, 16, 64] 25.064 0.952 0.902
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Fig. 11. Average PSNRs of DRU, GC-UNet, PGC-UNet-α1 and PGC-UNet-
α64 at 25th, 50th, 75th, 100th, 125th, 150th, 175th and 200th epoch.

observed that the proposed model performs the best among all
compared methods, consistent with the aforementioned objec-
tive evaluation, and verifying the superiority of the proposed
model with respect to human visual perception.

E. Ablation Study

For checking the contribution of each module in our model,
we conduct an ablation study on the following five different
configurations: 1) RU: U-Net with a residual block (shortcut
connection) but without dilated convolution; 2) DRU: U-Net
with dilated residual bottleneck block; 3) GC-UNet: global
context aided U-Net with dilated residual bottleneck block; 4)
PGC-UNet-α1: pyramid global context aided U-Net with di-
lated residual bottleneck block, using uniform weights, α1=[1,
1, 1, 1], for each stage pooling; 5) PGC-UNet-α64: pyramid
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TABLE VI
AVERAGE RUNNING TIMES OF DIFFERENT METHODS TESTED ON 852 SAMPLES.

Average Pixel Number Average Running Time (Matlab/CPU) Average Running Time (Python/GPU)
(
∑852

i=1Hi ×Wi)/852 DCP MSF CAP NLD NHN MSCNN AOD EPDN GridDN Our Model

≈ 423,875 2.022 0.591 1.539 2.940 2.898 2.346 0.188 0.293 0.309 0.315

global context aided U-Net with dilated residual bottleneck
block, with non-uniform weights, α64=[1, 4, 16, 64] for
different scale pooling.

The qualitative comparisons are demonstrated in Fig. 10.
They are further analyzed as follows.

RU & DRU: Fig.10 (b) gives the result of RU (configuration
1)). It can be observed that the color of the woods in the
red rectangle tends to be distorted. By contrast, as shown
in Fig.10(c), DRU (configuration 2)) gives us better visual
experience. The reason is that dilated convolution renders DRU
enlarging receptive field with an increase of convolutional lay-
ers. This mechanism could explore global context information
to some extent so that DRU can aggregate global context
information for learning haze relevant features.

GC block: In GC-UNet (configuration 3)), features of
convolutional layers are further enhanced by GC block [26]
before they are fed into the following dilated residual bottle-
neck block, so that global context features are modeled and
propagated to next stage, i.e., from Ei to Ei+1 and from Di+1

to Di. Comparing Figs.10 (c) and (d), GC-UNet yields better
dehazing than DRU around the park bench, which verifies that
GC block is more efficient than DRU for exploring global
context information. In addition, the success of the GC block
also indicates that a global context is really crucial for haze-
relevant features learning.

PGC block: GC block [26] acquires point-wise long-range
dependencies, while PGC block exploits both point-wise and
patch-wise long-range dependencies. Hence, the processing of
PGC is more in line with the real situation of almost constant
haze within a local patch. Comparing Fig.10 (e) with Fig. 10
(d), PGC-UNet-α1 (configuration 4)) is superior to GC-UNet,
indicating superior performance of the proposed PGC module.
From PGC-UNet-α1 to PGC-UNet-α64 (configuration 5)),
patch-wise long-range dependencies are further highlighted for
global context modeling. The result of PGC-UNet-α64 in Fig.
10 (f) is visually more pleasing than the one of PGC-UNet-α1.

Table V lists average PNSR, SSIM and CNI for five
different configurations. It can be observed that GC-UNet
outperforms DRU, indicating that GC block contributes a
better representation of the hazy image and increases the
dehazing ability of the network. PGC-UNet-α1 performs better
than GC-UNet, but only a small gap since uniform weights
contribute less patch-wise global context. PGC-UNet-α64 is
the best with respect to all of the three metrics since it
enables a patch-wise global context with the largest weight.
We also demonstrate PSNR curves (shown in Fig.11) along
with training epoch for all compared algorithms. It can be
found that PGC-UNet-α64 converges faster and keeps more
stable than others.

F. Computational Complexity

We gather time consumptions of all compared algorithms
over randomly selected 852 images with different resolutions
for statistics of computational complexites. DCP [1], MSF
[64], CAP [16], NLD [19], DHN [20] and MSCNN [22] are
realized by MATLAB codes, implemented on a Windows10
PC with an Inter(R) Core(TM) i7-8700 CPU @ 3.20 GHz
processor with 16GB RAM. Other deep learning-based meth-
ods, including AOD [23], EPDN [21], GridDN [42], and our
proposed one, are realized by Python, and implemented over
a NVIDIA Tesla P100 GPU.

Average running times are listed in Table VI. Among Matlab
codes mentioned above, MSF [64] is with the least time
consumption since it avoids to estimate the transmission map
and atmospheric light. Among deep learning-based methods,
AOD [23] costs the least in time consumption. The proposed
model is comparable to GridDN [42] with respect to time con-
sumption. In spite of a little bit of overhead of computational
complexity, the amount of dehazing efficiency achieved by the
proposed one is deserved compared to other methods.

V. CONCLUSION

It was found that global context modeling was crucial for
image dehazing. This paper further points out that patch-
wise long-range dependencies should be stressed for global
context modeling. For this purpose, we first propose a PGC
block that could explore patch-wise long-range dependencies
of different scales. An end-to-end dehazing network is then
proposed by plugging the PGC block into a U-Net, which is
further enhanced by a dilated residual bottleneck (DRB) block.
Extensive experiments and ablation studies demonstrate that
the proposed PGC contributes the backbone network, i.e., U-
Net, more efficiency for image dehazing, which also verifies
our ideas concerning patch-wise long-range dependencies and
global context modeling for benefits of image dehazing. The
proposed PGC is lightweight and computationally efficient. It
can be easily plugged into any other networks in case of need
global context modeling.
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