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DanceIt: Music-Inspired Dancing Video Synthesis
Xin Guo, Yifan Zhao , and Jia Li , Senior Member, IEEE

Abstract— Close your eyes and listen to music, one can easily
imagine an actor dancing rhythmically along with the music.
These dance movements are usually made up of dance movements
you have seen before. In this paper, we propose to reproduce such
an inherent capability of the human-being within a computer
vision system. The proposed system consists of three modules.
To explore the relationship between music and dance movements,
we propose a cross-modal alignment module that focuses on
dancing video clips, accompanied by pre-designed music, to learn
a system that can judge the consistency between the visual
features of pose sequences and the acoustic features of music. The
learned model is then used in the imagination module to select a
pose sequence for the given music. Such pose sequence selected
from the music, however, is usually discontinuous. To solve
this problem, in the spatial-temporal alignment module we
develop a spatial alignment algorithm based on the tendency
and periodicity of dance movements to predict dance movements
between discontinuous fragments. In addition, the selected pose
sequence is often misaligned with the music beat. To solve this
problem, we further develop a temporal alignment algorithm
to align the rhythm of music and dance. Finally, the processed
pose sequence is used to synthesize realistic dancing videos in
the imagination module. The generated dancing videos match
the content and rhythm of the music. Experimental results and
subjective evaluations show that the proposed approach can
perform the function of generating promising dancing videos by
inputting music.

Index Terms— Pose sequence, music, video synthesis, dancing
videos.

I. INTRODUCTION

IN AN imagined room of the human-being, the rhythm
of Hip-hop music can be incarnated as a dynamic street

dancer, and the music of Swan Lake usually leads to an elegant
ballet dancer. Such a capability of cross-modal imagination
is also a crucial foundation of the so-called creativity that
makes human brains different from a computer. With the
rapid development of computing devices and machine learning
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technologies, a concern naturally arises: is it possible to
reproduce such an inherent capability of the human-being
within a computer vision system?

Keeping this in our mind, the main motif of our paper
is to generate the natural dancing sequences along with the
musical beats (as shown in Fig. 1), namely audio-inspired
video synthesis. However, the dancing sequences to generate
and musical audio are substantially two different modalities
of media and generating from one modal to another is not
a one-to-one mapping problem. Thus there exist two burning
challenges to be solved: 1) how to generate a dancing frame
corresponding to the musical beats; 2) how to make the video
sequence vivid and natural as human acting?

Actually, many research efforts [1]–[4] have been done to
explore the generation task across multiple modalities. Among
these works, the most explored transformation is between text
and other media formats. For example, Chang and Zhang [1]
proposed to generate text descriptions from given video clips.
Tan et al. [3] and Li et al. [4] focused on a reverse problem
that intended to synthesize realistic images from texts.

Beyond these efforts in other modalities, there are few
works focusing on this less-explored task. Shlizerman et al. [5]
proposed a deep regression model to predict the sequence
of playing violin and piano along with the specific musical
note. However, this work mainly focuses on the 3D localiza-
tion of a fixed animation model, which still remains a gap
from the video in the wild scenarios. As the most relevant
research of our work, Tang et al. [6] developed an end-
to-end LSTM-autoencoder structure to predict dancing pose
sequences corresponding to the music melody. Lee et al. [7]
proposed a decomposition-to-composition network to align the
dancing skeletons with musical beats. However, generating
visual content with audio in the frequency domain is indeed
an ill-posed problem. There may exist enormous possible
dancing movements when hearing the same music piece.
In addition, these generated sequences also face difficulties in
some complex movements, e.g., backside or turning around.
Therefore in this paper, we propose to solve this problem
by building correspondences across different modalities rather
than learning one-to-one bijections, while the latter one usually
leads to over-fitting in network training.

To solve this drawback and the first challenge as well,
we resort to pose skeletons as intermediaries to bridge the
connection between the audio and visual content (illustrated
in Fig. 1). Instead of estimating specific poses aligned with
each musical beat, we propose to learn the coefficient relation-
ship between these two modalities. Thus a deep metric learning
approach is developed to learn this co-efficiency when adopt-
ing pose fragment as the basic unit. To further solve the second
challenge, we further propose to align different fragments with
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Fig. 1. The illustration of our motivation. Given a piece of input audio, our motif is to generate a dancing sequence automatically by taking the human pose
as an intermediary. The representative pose and generated dancing frames corresponding to the audio peaks (in the red dotted box) are viewed in the second
and third rows.

musical beats and refine the fragment transmissions, making
the generated video vivid and natural.

Taken these two cues together, we tentatively propose a
unified framework to synthesize the audio-inspired videos,
which are leading by two alignment modules corresponding to
the two main challenges. Given an input audio clip, the first
cross-modal alignment module aims to find the correlations
between audio clips and pose fragments. Taken the advantage
of MFCC [8] and bidirectional LSTM [9], the audio clips
are first encoded by the audio encoder to transform the audio
from the frequency domain into low-dimension features. And
the corresponding pose skeletons are encoded by a graph
convolutional network to understand the sparse pose skeletons.
Thus the pose and audio features from two different modal-
ities can be embedded into one unified space, and then the
correlations between them can be learned by minimizing the
feature distances (see Fig. 6).

With the learned correlations, in the generation phase,
we retrieve the best-matched pose fragment for each audio clip
and concatenate them as an integral pose sequence. However,
there usually exist sudden changes between two matched
pose fragments and the pre-stored pose fragments may not
perfectly match the audio beats, which makes the generated
video seems unnatural. In order to solve this challenge,
we propose a spatial-temporal alignment module that refines
the pose sequences from two different perspectives. In the
spatial domain, we first detect the sudden changes in the pose
sequences and refine them by a Time Series Decomposition
formula (TSD). In the temporal domain, we extract the musical
beats (high-frequency points) as key cues and enforce the
local maximum pose movements matching with the extracted
beats. Hence the generated dancing video can show the notable
pose movement (e.g., raising arms) aligning with the musical
beats.

After obtaining the natural dancing sequence, we follow the
commonly-used pose-to-video generation to make a complete
synthesis. Specially, we further adopt [10] with FaceGAN to
generate a clean human face, which requires a short input
video as the guidance. With the proposed two modules, exper-
iments show that our method generates promising dancing
videos with fewer consistency errors and best matches with
human subjective evaluations.

Our main contributions are summarized as follows:
1) We propose a novel framework for synthesizing dancing
videos from music sequences; 2) We propose a cross-modal
alignment module to explore the relationship between music
and dance clips; and 3) We propose a new method to align
different pose fragments and align the rhythm of music and
dance sequences.

The remainder of this paper is organized as follows:
section II reviews related work and section III describes the
proposed dataset. In section IV we describe our methods.
We further conduct qualitative and quantitative experiments
in section V. Finally, we conclude and discuss this paper
in section VI.

II. RELATED WORK

A. Pose Estimation

Recent researches [11]–[14] tend to solve the pose esti-
mation problem using deep learning techniques. Toshev and
Szegedy [11] first applied the deep learning method to human
pose estimation, namely deep pose, which achieves reli-
able performance on complex scenarios. Carreira et al. [15]
proposed a self-correcting model (iterative error feedback)
to solve the problem that feed-forward neural networks
cannot model dependencies in the output space efficiently.
In [16]–[19], researchers applied the graph model to the
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neural network to enhance the prediction ability of the system.
In [12], [20], [21], researchers built a multi-stage CNN regres-
sion model to expand the perceptive field of the network, so as
to improve the predictive power of the model. Cao et al. [13]
used the vector field to model the different limb structures
of the human body, which solved the problem of wrong
connection caused by the use of intermediate points of limbs.
A pose grammar [22] was proposed to solve the problem of 3D
human pose estimation. Ge et al. [23] adopted the point-cloud
data and proposed to regress a low dimensional representation
of the 3D hand. Moreover, Cai et al. [24] further proposed a
depth-free testing model for 3D hand pose estimation.

B. Action Prediction

Due to the variability and randomness of movements,
action prediction is a hard challenge. A large body of work
[25]–[32] used LSTM to predict the next action based on
a short video. Suwajanakorn et al. [2] built a hierarchical
system to predict lips movements and synthesize Obama’s
speech videos. For the prediction of dancing actions, earlier
works [33]–[35] proposed to learn the dancing motion based
on hand-crafted features. For example, Fan et al. [34] proposed
to synthesize the motion of virtual characters based on the
music style and beats rate. Yu et al. [36] leveraged the
self-attention mechanism to adaptively sparsify a complete
action graph in the temporal space. Wang et al. [37] pro-
posed to model smooth and diverse transitions on a latent
space of action sequences with much lower dimensionality.
Mao et al. [38] and Cai et al. [39] converted the motion into
the frequency domain by using the discrete cosine transform.
Tang et al. [6] proposed an LSTM-based autoencoder to map-
ping dancing skeletons based on the musical beat. Lee et al. [7]
proposed a decomposition-to-composition network to align the
dancing skeletons with musical beats. We will further elaborate
on the differences and relations to these works in Section IV-E.

C. Action Recognition

Motivated the highly accurate pose estimation techniques,
it has become a trend to use skeletons and joints to classify
human action. Various methods of action recognition based on
the skeleton were proposed during the last decade. Driven by
the success of deep learning, the skeleton modeling method
based on deep learning for action recognition has emerged.
Some works [32], [40], [41] built an action recognition
model based on RNN. Li et al. [42] and Ke et al. [43]
built a model based on temporal CNNs in an end-to-end
manner. Weng et al. [44] proposed a Spatial-Temporal Naive-
Bayes Nearest-Neighbor for skeleton-based action recognition.
Besides, Yan et al. [45] first applied GCN to the task of action
recognition based on the skeleton, which achieves promising
results in action recognition.

D. Image Synthesis

With regard to person image synthesis, recent studies
[46]–[52] usually generated a character image based on a
new pose. These works have achieved remarkable results in

generating the details of the image. Ma et al. proposed a new
framework [51] and loss function [52], but the framework did
not involve audio. In [53], the approach has shown that pose
can be used as an effective supervisory signal for prediction
and video generation. Chan et al. [10] built an interesting
model to generate a target person dancing video with the same
actions as the source person video. In this paper, we focus on
the audio-inspired dancing video generation while adopting
the pose skeletons as intermediaries for generation guidance.

E. Multi-Modal Studies

Many methods have achieved remarkable results in multi-
modal studies. For example, Mori et al. [54] proposed a
model to generate text from the image and describe the
contents of the image. In [3], [4], and [55], all of them
extracted text features to generate a single image. Moreover,
the StoryGAN [56] was proposed to generate images from
text to form a sequence of images that matches the content
of the text. Liao et al. [57] explored the video manipulation
driven by music. In addition, Chen and Huang [58] showed
face recognition would achieve better results by adding audio
input. Wang and Demirdjian [59] also built a complex system
to prove that audio input is beneficial for body pose estimation.
The system is motivated by MatchNet [60], which was aimed
to extract the features of different objects to calculate their
similarity.

III. DATASET

A. Dataset Collection

To synthesize the dancing imaginations from the corre-
sponding videos, we first collect the dancing videos in the
real scenarios, in which the moving dancers and audios can
be obtained simultaneously. As the intermediate of the dancing
descriptors, we thus collect the pose sequences in an automatic
manner and meanwhile constructing the database of pose
fragments. In addition, to simplify the problem formulation
of generation, we tend to collect videos with only one dancer,
thus the generation task of multiple people can be acquired by
repeating this process.

1) Audio Preprocessing: The original audios from the real
videos lie in the frequency domain, which is hard for extrac-
tion and subsequent processing. To obtain the aligned audio
features with video frames, we adopt the MFCC algorithm [8]
to transform the frequency signals to low-dimension vectors.
Specifically, we compute the features1 and choose the length of
the windows as 1, 000/video f ps with f ps = 24, i.e., 41.66ms.
The final audio feature dimension is 13 which can be easily
embedded in our system.

2) Pose Extraction: As mentioned above, we need to extract
the body keypoints from dancing videos in our system. Instead
of the manual labeling of each video frame, we automatically
obtain human keypoints by performing the OpenPose [61]
algorithm. We find that there is an accidental detection error
such as the local jitter (see, Fig. 2 (a)) in the continuous
frames. To smooth the pose sequences and filter the out-liners,

1https://github.com/jameslyons/python speech features
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Fig. 2. The detection result after smoothing: (a) Jitter (in red dotted box) in
the process of detecting body keypoints. (b) Results after smoothing.

Fig. 3. Exemplar failures of keypoint detection, which can be automatically
removed before constructing training data.

we conduct a simple linear interpolation among different
pose frames. The smoothed results are shown in Fig. 2 (b).
In addition, we automatically delete the incomplete detection
(see, Fig. 3) following two rules: 1) it and the successive
frames that follow it are too far from the previous frame,
or 2) hand and foot nodes are not detected. After filtering
the abnormal data, we segment the video clips as fragments
with non-overlapping sliding windows, i.e., 1s to 4s. We divide
the extracted pose sequence into different fragments in seconds
and then construct the fragments into the sequence database�.

B. Dataset Statistics

1) Data Scale: We collect 122 dancing videos of females
and 32 videos of males, including ACGN, robot, and hip-hop
dance. Our collected videos range from 3 min to 5 min. A total
of 9.0 hours of dancing videos is collected. We process all
videos to 24 f ps, extract frames into the dance image set and
resize them to the same size. The total number of frames is
706, 463.

2) High Quality: To construct a high-quality dataset,
the dancing videos we collected are high-resolution
(1920 × 1080) and have a stable fixed camera and bright
lighting. Specifically, we select videos with high-quality music
sound, noiseless interference, and solo performance. Fig. 4
shows example frames from videos and their corresponding
keypoints.

3) Abundant Diversity: As shown in Fig. 5, we count the
number of turns and the musical tempo in each dancing
video. The tempo of the music and the number of turns vary
significantly in each video. Moreover, the number of turns in
all videos is greater than 1, and most of the number is greater
than 5 (see, Fig. 5 (a)).

IV. THE APPROACH

A. Overview

Given an input audio clip A and source video frames Vs ,
the target of our synthesis framework is learning to generate
target video frames Vt , while adopting the corresponding

Fig. 4. Examples of our dataset: video frames in the dancing video and their
corresponding pose keypoints.

Fig. 5. Dataset statistics. We extract the tempo of each music and the number
of turns in each video from the collected dance dataset. Then we present the
distribution of the number of turns and musical tempo.

pose features P as an intermediary. Let {xs
i = (vs

i , as
i , ps

i )|
x ∈ S}Ni=1, which is a triplet of video, audio, and pose frames
from the input source domain S. And the triplet xt ∈ T of
target domain is defined accordingly. Divided by the source
and target domain, our framework can be constructed in two
phases, which are shown in Fig. 6.

In the first matching phase, we take the generated xs as
input and thus regularize the cross-modal alignment �c(·) to
learn the correspondence between each ps

i and as
i . Instead of

direct learning the relation of specific identities in the limited
source video, we expound this audio-to-video correspondence
into a general condition by measuring the distance between
audios and pose sequences. While pose features are usually
regarded as the guidance for human video generation. This
relationship learning process has the form:
θc=arg min

θ
�c(as

i , ps
j |θ)�(i = j)−�c(as

i , ps
j |θ)�(i �= j),

(1)

where �(·) is the characteristic function and θ denotes the
network parameters of cross-modal alignment module �c.
This objective regularizes audios and videos from the same
frame with closer distances and vice versa.

With the learned relationship of videos and audios, the gen-
eration phase only takes audio at from the target domain
as input and retrieves the nearest pose sequence p̂ from the
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Fig. 6. The pipeline of the proposed framework. Matching Phase: given input video and audios, the matching phase learns the relationship between these
two different modalities. Generation Phase: the spatial alignment is used to re-predict dance movements between discontinuous pose fragments. The temporal
algorithm aligns the beats of the music and pose sequences. The imagination module synthesizes the final dancing videos from the processed pose sequences.

constructed sequence database � (described in Section III-A)
from the source domain. It can be formally represented as:

p̂ = arg min
p∈�

�c(as , p|θc). (2)

The retrieved pose sequence p̂ is usually fragmented, causing
the generated dancing movements unnatural. Hence we pro-
pose a spatial-temporal alignment module �st , which refines
the sequence from two different aspects. In the spatial domain,
we detect the sudden changes among adjacent frames and
smooth the results by an interpolation operation. In the tempo-
ral domain, we align the musical beats with substantial body
movements, which makes the dancers dance rhythmically.
After the alignment module �st , the pose sequences are further
encoded along with the guidance video clip vg ∈ � from the
target domain to generate imagined dancing movements, which
is supervised with an adversarial training process.

vt = G(�st (p̂, at ), vg), (3)

where G denotes the generation network in Section IV-D.
In the following subsections, we will elaborate the cross-modal
alignment �c in Section IV-B, spatial-temporal alignment
module �st in Section IV-C, and the imagination module in
Section IV-D.

B. Cross-Modal Alignment

To measure the distance between audio as and video
frames vs , we first utilize the extracted pose sequences

in Section III and corresponded audio clips and fed these
encoded features to the cross-modal alignment module (view
in yellow in Fig. 6). However, these features are raw data
that are simply transformed from the image or frequency
domains, making the distance hard to measure. Hence we
adopt the audio encoder and the pose encoder to embed
different modalities into the same latent space and finally use
a metric learning optimization to learn this correlation.

1) Audio Encoder: We first transform the audio with MFCC
and process in Section III to a 13d vector per frame. Inspired
by previous methods, which achieves satisfactory results to
predict finger movements [5] and lip synthesizes [2], we adopt
a bidirectional-LSTM (Bi-LSTM) and add a fully connected
layer fc to extract audio features. With the bidirectional
information flow, our encoder can extract both forward and
backward information to aggregate richer features from the
audio. The encoding operation of the i th frame is:

→
hi = →

LSTM (as
i ,
→
h i−1, vi ), (4)

←
hi = ←

LSTM (as
i ,
←
h i+1, vi ), (5)

âs
i = fc(

→
hi ,
←
hi ), (6)

where vi is the hidden layers and âs is the encoded output.
The parameters of Bi-LSTM that we used are hidden state of
100, dropout of 0.1, learning rate of 1e − 3. The final audio
feature is 16 dimensions.
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Fig. 7. Example of training data. Positive samples: corresponding audio with
pose fragments. Negative samples: non-corresponding audio with delayed pose
fragments.

2) Pose Encoder: To extract the context information of
long-term frames, the generated pose sequences ps are then
fed into a graph encoder. We adopt the ST-GCN [45] to
exploit the relationship of different pose skeletons, which thus
forms a holistic understanding of each pose fragment. The
graph encoder extracts the temporal information gte on 2d
convolution kernels, and extracts their spatial information gsp

on graph convolution kernels:
gte = Wcp+ b1, (7)

gsp = �−
1
2 (A+ I)�−

1
2 gteWg, (8)

p̂t = fc(gsp)+ b2, (9)

where Wc and Wg represent 2d convolution kernel and the
graph convolution kernel respectively. A is the adjacent matrix
for the pose and b{1,2} are the learnable bias. Here �ii =
� j (Ai j + Ii j ). The embedded features of pose ps and audio
as are encoded with the same size of 16d.

After obtaining music features and corresponding dance
features, we calculate the similarity by Euclidean distance.
We propose a correlation matching loss Lmat to regularize the
similarity of features. The encoded pose feature p̂ and audio
feature â are attached with closer distance if they are from the
same sequence, and vice versa. The overall loss function can
be formulated as:
Lmat =||p̂i − â j ||22�(i = j)+ ||p̂i − â j − �||22�(i �= j). (10)

If p̂ and â are relevant features, the loss function calculates
the distance of two features and feeds it back to the network.
On the irrelevant condition, we add a parameter � to enlarge
the distance of two features. However, only learning from the
corresponding cases can easily lead to over-fitting. To solve
this problem, we add a non-corresponding case to training
data, where the pose fragments are delayed by a few seconds
than MFCC features, which is illustrated in Fig. 7.

C. Spatial-Temporal Alignment

With the learned MatchNet �c(θc), each test audio could
retrieve a sequence of pose fragments with the optimization
in Eqn. (2). Although the retrieved pose fragments gener-
ate reliable movements, there exists a severe misalignment
between different pose fragments, considering the fragments
are discretely sampled in the construction of database �.

Toward this end, it is desirable to further rearrange the
sequence with a spatial-temporal alignment module to make
the dancing sequence vivid.

1) Spatial Alignment: In the generation phase of Fig. 6,
the audio guidance at from the target domain is encoded in
the same way to get an audio vector. Instead of predicting the
pose of each frame, we retrieve a most similar pose sequence
pt with the built database �. However, it occurs abnormal
movements among multiple pose fragments. Thus to solve this
problem, we first adopt a spatial alignment to align the features
being reasonable. The first step of spatial alignment is to detect
the discontinuous frame in the retrieved pose sequences, whose
skeletons show jitters with the previous frame. We define one
frame as the discontinuous frame whose keypoint movements
are larger than 10 pixels. Our basic idea is to refine these
out-liners with a smooth movement function, which can be
estimated with the whole dancing sequences.

In practice, the music melodies are composed of “beats”,
which contain periodic signals but with dynamic changes
in each period. Owing to the seq-to-seq design, here we
introduce the temporal series decomposition for aligning and
smoothing the possible non-continues frames between adjacent
sequences. Taking this abnormal frame pk as the central frame,
we thus select the frames in nearby window i ∈ �k − ωa/2,
k + ωa/2� to form a Time Series Decomposition (TSD)
algorithm.

With the defined sliding window, one notable issue is retain-
ing the position of the start point and endpoint unchanged,
which guarantees consistency after the overall refinement.
Therefore we resort to a linear fitting operation R = F(p)
from the startpoint and endpoint of this sequence and F(pi )
represents the i th value on this line. Hence we take the mis-
alignment di = pi − F(pi ) for optimization. Once abnormal
frames are detected, we conduct this smoothing operation
inside each window i ∈ �k − ωa/2, k + ωa/2�.

Following the basic idea of TSD, we simply decompose
each keypoint misalignment d with the trend term M , the peri-
odic term S and a random term γ . Taking one keypoint
misalignment di of the i th frame as an example, it has the
form:

di = Si + Mi + γi . (11)

We then perform differential operations ϕ(·) on d to elim-
inate the periodic movement and obtain the tend function.
The differential displacement d̂i without periodicity can be
formulated as:

d̂i = Mi (i |α) = α0 +
3∑

m=1

αmim, (12)

where in each period T , the trend term M can be fitted with
the learnable weight α of the cubic polynomial function.

The periodic term S is to find the minimum period T
for St = Si+T and T is determined by volatility threshold
th = 5 pixels.

St = E(di − d̂i ), (13)

where E(·) denotes the average expectation. The stationary
random term γ ∼ N (0, σ 2) is normally distributed. With this
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Algorithm 1 Spatial Alignment Algorithm

learnt decomposition, our target is using the previous ωb

(ωb > ωa) frames as reference frames and conduct this
alignment per ωa frames. We thus predict the TSD parameters
of the next ωa-length window (M∗, S∗, γ ∗) and update the
final coordinate point p̃, which is illustrated in Alg. 1.

2) Temporal Alignment: Although the dancing sequences
are well-smoothed by the spatial alignment, it seems unnatural
when the musical beats (abrupt changes in audios) are not
aligned with the large motions, e.g., raising hands. Thus we
adopt a temporal alignment to make the musical beats and
motions consistent.

To make the sequences align with the music beats, we first
extract the beat points of the target audio at with the librosa
library [62].

In the pose sequence, these pose beats are defined by:
μ = arg max

j
(|̃pt

j − p̃t
j−1|), j ∈ �i, i + ωc�. (14)

We select ωc adjacent frames as a sliding window to search
the local maximum to align. With the detected audio beats aμ,
the ωc frames can be re-organized as [i, μ] and (μ, i + ωc].
For the preceding and the following frames of the current beat

point, we adopt cubic fitting interpolation to get the aligned
pose p̂t . This align function then has the form:

α∗ = arg min
α

μ∑
x=i

(

3∑
m=0

αm xm − p̃t
x)

2, (15)

p̂t = α∗0 +
3∑

m=1

α∗m xm . (16)

The optimization of (μ, i + ωc] is conducted in the same
manner. After this temporal alignment, the musical beats and
abrupt pose movements can be well aligned, which can serve
as guidance for video imagination.

D. Imagination

Taken the optimized p̂t and video guidance vg from target
domain �, the final imagination is to generate reliable video
frames. To achieve this goal, we adopt the pix2pixHD [63] as
the generator for poseGAN. Video guidance vg is a 2-minute
length video with the target character acting simply. In the
stage of training, the goal of training generator is to generate
a more realistic image and fools discriminator to regard as
real. On the contrary, the purpose of training discriminator is
to identify whether the image is from the real images or the
generator synthesizing.

However, there still exist some abnormal regions in the
generated images, especially in the face region. To enhance
the representation of face regions, we adopt the FaceGAN [10]
to enhance the facial region of the generated image. The
purpose of the generator in the FaceGAN is to synthesis the
detailed supplement of the face area between the synthesized
images and the real images. We define the face region as the
area near the nose position (i.e. 50 × 50 patches centered
around the nose node) in the detected body pose, which is
illustrated in Fig. 16. The generator of the FaceGAN outputs
a residual gradient to help to synthesize the final face region.
Additionally, in the process of training FaceGAN, the purpose
of the discriminator is to distinguish the image synthesized by
the generator or from the real images.

E. Discussions and Relations

To make a theoretical analysis with state-of-the-art
models [6], [7], here we elaborate on three major differences
as follows.

1) Relationship Learning: Both Lee et al.’s method [7] and
Tang et al.’s method [6] are established based on the direct
deduction from input music to dancing skeletons. However,
direct mapping one modality to the other would usually
lead to unreliable results. To this end, our work proposes
a new perspective to explore the relationship between input
audio sequence to a dancing sequence, namely seq-to-seq
mapping. This guarantees the smoothness and rationality of
the generated dancing videos.

2) Audio Understanding: Tang et al. [6] proposed to learn
the skeleton movement with only extracting the “beat” frames
to retain the motion alignments, which neglects the contextual
information of input audio. To make a further improvement,
Lee et al. [7] adopt a music style extractor to obtain the whole
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artistic style of the audio content, e.g., sadness or happiness.
While in these researches, the contextual understanding of
musical information can be easily neglected. By contrast,
our proposed approach extracts the global information of the
whole input audio, maintaining the audio content for the cross-
modal relationship learning. We believe that understanding the
whole audio content but not only the “beat” is necessary for
the dancing video synthesis.

3) Generation Targets: The generation target of [7] and [6]
are dancing skeletons, i.e., human body keypoints. However,
the final motif of music-inspired synthesize is to generate
vivid and natural dancing videos. Hence, in our method,
an imagination module is proposed to synthesize the dancing
videos, and the skeletons play an intermediate role in the
generation framework.

V. EXPERIMENTS

A. Experimental Setting

To quantitatively evaluate the generated dancing results of
our approach, we conduct experiments from two aspects, i.e.,
the quality of pose sequence and synthesized videos.2 To eval-
uate the generation of pose sequences, we randomly select
80% of the data for training and the rest 20% for testing. In the
processing of dataset assembling (Section III-A), we remove
about 10% of the frames in the videos due to the extracted
pose data that cannot be tackled. To synthesize dance videos in
the imagination module, we collect 8 videos vg with a length
of 120 seconds from different participants. We sample these
generation videos in different natural scenarios, which have
different backgrounds, clothing, and illuminations.

B. Implementation Details

Attributed to the light-weight implementation, our whole
framework can be trained on a single consumer-level NVIDIA
RTX 2070 GPU, 12 cores CPUs, and 16GB memory. It takes
35.1 hours for detecting pose keypoints and 0.5 hours for
extracting the MFCC features of the music. The running
time for 500 epochs of training of cross-modal system takes
2.9 hours (20.9s per epoch). After getting videos from the
participants, we cost 12.0 hours to train the poseGAN to
generate the target video image from the pose. In addition,
it takes 0.7 hours to train the FaceGAN, which is used to
strengthen facial areas. Since the shortest pose fragment is 1s
and the number of frames is 24, we thus adopt �st with ωa

of 8 and ωb of 24 to conduct the experiments.

C. Comparison With State-of-the-Art

1) Comparisons of Skeleton Alignment: We adopt the offi-
cial model of [7] and test our model and [7] with the same
input test. Here we propose three metrics to evaluate the
quality of generated skeletons.

a) Beat alignment score: A musical beat is defined as
the maximum value of body movement in each sequence unit

2Some results can be found at http://cvteam.net/projects/danceit/results.mp4

TABLE I

QUANTITATIVE COMPARISONS OF OUR PROPOSED METHOD AND
LEE et al. [7]. SB A DENOTES THE BEAT ALIGNMENT RATE.
THE BEST PERFORMANCES ARE IN BOLD. ↑: THE HIGHER

THE BETTER. ↓: THE LOWER THE BETTER

Fig. 8. Beat alignment score SB A under different musical beat environment.
The tempo values are presented by beat number/per minute.

in Eqn. (14). Hence our aim is to calculate the matched beat
number between the input audio am

t and body movement μ:

SB A =
∑n

m=0 �(a
t
m = μm)

Bn
, (17)

where �(·) denotes the indicator function and Bn denotes the
total number of the beat. The measurement SB A tends to
be higher if there is a synchronization of input music and
generated dancing movement.

b) Hand/Foot moving distribution distance (MDD):
Audio-inspired synthesizing methods usually generate differ-
ent dancing movements when encountering the same input
audio. Hence, we proposed to measure the skeleton movement
between adjacent frames. i.e., human beings would present
similar moving range when hearing similar music. We measure
the distance between hand and foot distributions between the
groundtruth source ps and estimated pose p̂t as follows:

M DD{h, f }= KL{h, f }(�p̂t ||�ps)+ KL{h, f }(�ps ||�p̂t )

2
, (18)

where M DD{h, f } denotes the hand and foot moving dis-
tribution distance respectively and KL(·) represents the KL
divergence scores. � denotes the difference between two
adjacent frames, i.e., the difference between pi and pi−1.

c) Hand/Foot spacing distribution distance (SDD):
Besides the movement of hand and foot keypoints, here we
propose a new measurement to describe the spacing distance
of one person, e.g., the distance between one’s feet. These
measurements are defined similarly using Eqn. (18) to describe
the discrepancy of adjacent frames.

Moreover, we exhibit the beat alignment score SB A

in Fig. 8 under different musical beat environment, i.e., beat
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Fig. 9. Visualizations of beat alignment attribute. With the same input audio guidance, (a) presents the generated pose sequences of Lee et al. [7], and
(b) presents the generated pose sequences by our method.

TABLE II

HAND AND FOOT MOVING DISTRIBUTION COMPARISONS WITH

STATE-OF-THE-ART. (X1,X2) REPRESENTS THE PIXEL

DISTANCE OF THE MOVING RANGE BETWEEN
ADJACENT FRAMES. THE VALUES ARE

SHOWN WITH THE PERCENTAGE OF

THE OVERALL DISTRIBUTION

number/per minute. The results indicate that under different
beat rate conditions, our proposed method shows better align-
ment than the state-of-the-art model [7], especially in music
with slow rhythm (i.e., smaller than 120 beats/per minute).

2) Comparisons of Moving Distribution: One severe prob-
lem lies in the direct-mapping strategies, e.g., [6] and [7],
is the abnormal jittering. Considering the realistic dancing
video, the movement of each body keypoint would present in
a normal range. A large movement between adjacent frames
(i.e., 1/30s) is not encouraged. Here we present the distrib-
ution of hand/foot keypoint movements in Tab. II. It can be
found that our model generates more smooth and progressive
body movement while [7] performs large jittering movements.
In addition, for moving distance larger than 80pixs (which
is usually impossible for body motion in 1/30s), [7] shows
some abnormal distributions in both hand and foot motions.
Benefiting from the sequence to sequence mapping and the
spatial-temporal alignment module, our approach generates
notably better results.

3) Visualization Comparisons: To visually compare with
state-of-the-art models [7], we exhibit four representative cases
to verify the generation quality of our approach. With the
same music guidance in the bottom (musical beats are colored
in red line), the generated pose skeleton and our skeleton
are presented at top and bottom respectively. We exhibit a
representative case with the same input music in Fig. 9 our

Fig. 10. 3D Visualizations of continuous movements. (a): skeletons generated
by our proposed network. (b):skeletons generated by [7]. The three axes
indicate the x, y pixel localization and frame i .

generated dancing skeleton has a strong ability for attaining
rich body motions that are highly aligned with the musical
beats. While the Lee et al. [7] in the first row shows slightly
body movements but containing more abnormal jitterings.
Moreover, it can be found that our generated pose sequences
show continuous rhythmic dancing sequence while [7] shows
slight changes. Benefiting from the cross-modal alignment
and rich pose skeleton representation with head keypoints,
our approach generates dynamic head poses while [7] are
not endowed. Last but not least, in Fig. 10, considering the
different mapping manners (i.e., direct mapping and seq-to-
seq mapping), [7] shows abnormal movement in the 834th
frame, while our model shows continuous dancing skeleton
sequences.

D. Performance Analysis

1) Matching Phase: The training and validation Euclidean
distance of Eqn. (10) can be found in Tab. III. The matching
system performs best with the combination of (lr = 0.0001,
dropout = 0.1, D f = 16), which achieves the minimal loss
in the training set and validation set simultaneously. To test
the ability to find the consistency of the music and pose clips,
we measure the similarity of two features by the Euclidean
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TABLE III

THE EUCLIDEAN DISTANCE (EUCLID.) AND CORRELATION ACCURACY
(CORR.) OF DIFFERENT HYPER-PARAMETERS OF CROSS-MODAL

ALIGNMENT. D f DENOTES THE DIMENSION

OF OUTPUT FEATURES

Fig. 11. Losses of our model when training different length of pose
fragments. From left to right are different length pose fragments from 1s
to 4s (The x-axis is the training epochs and the y-axis is the loss).

distance between them. To evaluate the matching accuracy
from another perspective, we thus define the correlation accu-
racy as: i) the music and pose clip are corresponding if the
distance between two features is less than 1, ii) the music
and pose clip are non-corresponded if the distance is larger
than 1.

The length of pose fragment is a key factor that affects
the matching and generation quality. To test the feasibility
of our framework, we experiment with different lengths of
xs from 1s to 4s. It is obvious that all the lengths of pose
fragments can converge in a short period of training time (see
Fig. 11 for details). And the matching model with a short
length of xs shows a more rapid converge than that of a
large length. However, there exists a notable trade-off between
the matching phase and the generation phase. In the spatial-
temporal alignment module �st of generation stage, we notice
that the results p̂t are sometimes unstable when the length of
xs is extremely short (e.g., 1s) and unable to achieve a complex
movement, e.g., turning the body around. Thus to make the
system consistent, we choose the length of pose fragment with
more than 1s.

The other intuitive way to evaluate the matching results is
the exhibition of skeleton movements. After the model �st is
trained, we experiment with different kinds of music at to the

Fig. 12. The pose sequence after spatial alignment: (a) the discontinuity
(in the red dotted box) between two adjacent pose fragments. (b) the optimized
pose sequence.

Fig. 13. The movement tendency of the dance. The left figure is the x-axis
trend of the hand node and the right one is the y-axis trend of the foot node.
The dance movements have strong periodicity in some periods (left) and not
in others (right).

system and exhibit two typical pt at the same moment (see
Fig. 15). We observe that various pt in different music closely
matching the content of the music and the skeletons act in a
steady motion without abrupt changes. Remarkably, our model
has the potential to predict complex pose movements, which
is extremely lacking in the end-to-end learning scheme. For
example, there exists a backside action (top of Fig. 15) in the
generated results.

2) Generation Phase: In the generation phase of pose
sequence pt , we need to retrieve the adequate pose fragment
for database D. However, these fragments are not on the
same scale owing that they are collected from different video
frames. To solve this problem, we propose a normalization
algorithm to unify the pose fragment into the same scale. For
each selected pose fragment, we record the maximum distance
between the nose keypoint and the feet keypoint. Then we
resize the retrieved fragments as the same size as the target
person. The ratios of different pose fragments are then used
to expand the frame equally in the x and y axis.

a) Spatial alignment: We therefore visualize the spa-
tial misalignment in Fig. 12 (a). It is obvious that there
exists an abnormal movement in the retrieved pose sequence.
As stated in the spatial alignment module, we extract two
dance movements of hand keypoint and foot keypoint in
Fig. 13 respectively. It can be concluded that the hand keypoint
moves periodically and the foot keypoint moves nonperiodic.
Based on this finding, we conduct the proposed spatial align-
ment with the trend term Mt and periodic term St of i th
frame. The refined results with our spatial alignment module
are shown in Fig. 12 (b), in which the human pose moves
more stably and turns around in a more reasonable way.

b) Temporal alignment: To further align musical beats
with pose movements, we use the temporal alignment for

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on July 22,2021 at 14:26:04 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: DANCEIT: MUSIC-INSPIRED DANCING VIDEO SYNTHESIS 5569

Fig. 14. The pose sequence after temporal alignment: matched dance
movements at different musical moments. After the processing of the temporal
algorithm, the rhythms (in the red dotted box) of the pose sequence and music
are aligned.

Fig. 15. The predicted pose sequence of different music: top sequences
matched to the music Updown Funk, bottom sequences matched to the music
Follow Me. Our model has the potential to predict complex pose movement.

Fig. 16. Visualized results with FaceGAN: (a) the groundtruth image. (b) the
generated image. (c) the gradient generated by the FaceGAN generator. (d) the
image optimized by FaceGAN.

consistency, which is shown in Fig. 14. The processed music
can be viewed in blue, in which the beats are viewed in the red
dotted box. To align the pose sequences with musical beats,
the red dotted box shows the most significant movement in
the local window of ωc frames. To be specific, we set the
parameter ωc as the interval length of the adjacent musical
beats, which remains constant in each piece of music. In this
manner, it can be concluded that the changing of movement are
naturally aligned with the musical beats and meanwhile overall
pose moving trends are greatly maintained. For example, at the
first beat, the right foot of the skeleton moves a large step
simultaneously.

c) Video imagination: After getting the final pose
sequence p̂t , we synthesize the target person dancing video vt

with the resolution of 512× 512 in the imagination module,
as shown in Fig. 17 (a). It can be seen that our model can be
generalized the complex scenarios with higher light intensities.
However, the face regions are usually blurry owing that our
human beings pay much more attention to the face regions
than other regions. Thus we adopt the FaceGAN in Fig. 16 to
adopt the gradient map of the face region as input. With this
local enhancement, the local regions are further concatenated
with the holistic image, which is viewed in Fig. 17 (b)).

Fig. 17. The example of synthesizing target dance image: (a) the image of
the target character generated from the pose. (b) the generated image with the
face region enhanced by FaceGAN.

Fig. 18. User study. (a) The voting result of the dancing videos obtained
without any optimization. (b) The voting result of the dancing videos
obtained by linear interpolation. (c) The voting result of the dancing videos
obtained after the processing of the spatial-temporal alignment module.

E. Time Efficiency

Our system consists of the cross-modal alignment, spatial-
temporal alignment and imagination module. With the res-
olution of 512 × 512 images, the computation costs of our
two alignment modules are 23.59GFLops and the cost of
the imagination module is 373.28GFLops. In the process of
generating dancing sequences, our proposed model generates
48.8 frames per second, which is relatively light-weight. In the
process of final video synthesis, our proposed imagination
module generates 8.59 frames per second.

F. Subjective Evaluation

To evaluate the quality of the generated dancing videos,
we conduct a user study to measure the effectiveness of
our proposed spatial-temporal alignment module. We evaluate
two different versions of our method: 1) pose sequences
without any optimization, 2) pose sequences with linear fitting
interpolation. We develop a simple user interface to play these
two videos with the same musical pieces and choose the option
and the subsequent studies are conducted in the same setting.

To make a fair comparison, we randomly sample 20 video
clips from the generated dancing videos of each version. Each
participant watches the video clips and chooses one of the
two options: 1) the synthesized dancing video is realistic,
2) the synthesized dancing video is unrealistic. As shown in
Fig. 18 (a), without any optimization, 26.39% of the votes
indicate the synthesized dancing videos are realistic, while
73.61% of them are unrealistic. The reason for these voting
results is that the dance movement shows abnormal changes,
which are unnatural to human subjective evaluations.
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Fig. 19. Synthesized results of multiple targets: Images of different human dances generated in different music. By inputting different music and videos of
different persons, our proposed approach is able to generate satisfactory results that match human subjective evaluations.

The new voting results obtained after the post-processing of
the pose sequence with linear fitting interpolation are shown
in Fig. 18 (b). 53.33% of participants vote that the synthesized
dancing videos are realistic, while 46.67% do not. After
performing the proposed alignment module, this new voting
result obtained after spatial alignment is shown in Fig. 18 c).
64.58% of participants vote that the synthesized dancing
videos are realistic, while 35.42% participants do not.

G. Generalizations and Failure Modes

1) Video Syntheses Under Different Scenarios: Benefiting
from the alignment modules and the pose normalization, our
approach is able to provide synthesized videos in various
scenarios. As shown in Fig. 19, the generated videos under
different conditions show natural movements and clear dancing
poses, which answers the question in Section I: our proposed
method can generate reliable imaginations with the input of
music pieces. For example, with the confusing background
to the human bodies, our approaches generate stable pose
sequences while keeping the background relatively static,
especially in the last group of special costumes.

2) Failure Modes: Although our proposed method generates
reasonable dancing videos, there are still some limitations in
our system. As shown in Fig. 20 a), the generated arms are
blurry in some complex scenarios, which forces us to improve
the quality of the generator. However, our two alignment mod-
ules provide satisfactory results of dancing poses, which could
be reliable guidance for the imagination module. In the second

Fig. 20. The failure cases of synthesizing images: (a) The arms are blurry.
(b) The face and arms are unnatural.

case of Fig. 20 b), when performing the complicated poses,
the imagination still faces challenges in distinguishing the
overlapping parts with similar visual appearances, which is
left for our future work.

VI. CONCLUSION

In this paper, we focus on the audio-inspired video syn-
thesis, which aims to generate reliable dancing videos corre-
sponding to the input audio. To solve this important problem,
we first collect a data set with musical audios and video
clips, while combing the pose sequences at the same time.
Based on this dataset, we make an attempt to align these
two media with two alignment modules, i.e., the cross-modal
alignment module and the spatial-temporal alignment module.
Considering the audio and video frames are two completely
different modalities, we process these two media with different
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encoders and take the pose as an intermediary to build the
connections. Thus the relationship between the audio and
pose sequences is established. Then this learned relationship
helps the retrieval of pose fragments with given test audio,
and we concatenate these fragments as the dancing guidance.
However, there exists strong misalignment between the pose
fragments and audio beats, we thus adopt the spatial-temporal
alignment module to align the pose sequences with musical
beats and changing steadily in a more natural manner. With
the generated pose sequences as guidance, we finally generate
the imagined dancers moving vividly aligning with the input
music. Experimental evidence demonstrates that our method
shows a reliable matching correlation of different types of
media and generates realistic videos that match the human
subjective evaluations.
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