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Abstract

Recently, we have witnessed the great progress of salient ob-
ject detection (SOD), which benefits from the effectiveness
of various feature aggregation strategies. However, existing
methods usually aggregate the low-level features containing
details and the high-level features containing semantics over
a large span, which introduces noise into the aggregated fea-
tures and generates inaccurate saliency maps. In this paper,
we propose a pyramidal feature shrinking network (PFSNet),
which aims to aggregate adjacent feature nodes in pairs with
layer-by-layer shrinkage, so that the aggregated features fuse
effective details and semantics and discard interference infor-
mation. Specifically, a pyramidal shrinking decoder (PSD) is
proposed to aggregate adjacent features hierarchically in an
asymptotic manner. Unlike other methods that aggregate fea-
tures with significantly different information, this method on-
ly focuses on adjacent feature nodes in each layer and shrinks
them to a final unique feature node. Besides, we propose
an adjacent fusion module (AFM) to perform mutual spatial
enhancement between the adjacent features to dynamically
weight the features and adaptively fuse the appropriate in-
formation. Besides, a scale-aware enrichment module (SEM)
based on the features extracted from the backbone is utilized
to obtain rich scale information and generate diverse initial
features with dilated convolutions. Extensive quantitative and
qualitative experiments demonstrate that the proposed intu-
itive framework outperforms 14 state-of-the-art approaches
on 5 public datasets.

Introduction

The purpose of salient object detection (SOD) is to estimate
visually important objects and regions in an image. This is
the basic work of many visual tasks such as object track-
ing (Liang et al. 2016), object recognition (Rutishauser et al.
2004), semantic segmentation (Yao and Gong 2019) and so
on. Similar to many other computer vision tasks, SOD is al-
so dominated by the CNN methods, although the results are
excellent but not perfect.

SOD algorithms based on deep-learning usually depend
on various strategies to fuse features extracted from the
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Figure 1: Visual comparison of features before the last fea-
ture fusion. (a) MINet. (b) the result of MINet. From top to
bottom, (b) shows the predicted map, low-level features and
high-level features. (c) PFSNet. (d) denotes our results, and
the specific meaning is consistent with (b).

backbone. And there is a big gap between high-level fea-
tures and low-level features. Therefore, the key to the SOD
algorithm lies in how to make full use of semantic and
detailed information. FPN (Lin et al. 2017) considers this
problem, and subtly combines semantic information and de-
tailed information by gradually merging features of differ-
ent levels from bottom to top. Besides, many works such as
(Zhang et al. 2018a; Zhao et al. 2020) based on the FPN have
achieved milestone results. However, there are still problem-
s in feature fusion in FPN based networks. Considering the
merging operation of the last two features, the low-level fea-
tures with rich details and noise will be combined with the
high-level features after the previous fusion processing. As
shown in Fig. 1, We visualize these two features of MINet
(Pang et al. 2020) based on FPN and find that they are com-
pletely different, and the result shows the direct combina-
tion of features with large differences will produce noise and
even cause performance degradation. We define the above-
mentioned feature fusion operations as leaping feature fu-



sion. Of course, not only FPN-based networks suffer from
this problem, but many methods that need to integrate high-
level and low-level features fall into this dilemma.

We are inspired by the evolution of biological species
and propose a method to avoid leaping feature fusion oper-
ations. Under the constraints of natural selection, organisms
evolve in a direction suitable for the current environment.
In this process, there are two characteristics: 1) Only crea-
tures with similar characteristics can produce offspring; 2)
Natural selection will enhance genes suitable for the envi-
ronment while inhibiting genes not suitable for the current
environment. Considering the similarity between feature fu-
sion and the biological evolution process, we propose a new
SOD network based on the above natural phenomena.

First of all, we propose a pyramid shrinking decoder (PS-
D) as shown in Fig. 1 (c). We define five features extracted
from the backbone as five feature types, adjacent features as
similar features, and non-adjacent features as isolated fea-
tures. PSD only shrinks similar features in each layer. After
several layers of shrinking, the features most suitable for the
current input are retained. To make the fusion process en-
hance the features suitable for the current sample and sup-
press the features not suitable, we design an adjacent fusion
module (AFM). It first allows adjacent features to comple-
ment each other spatially, and then assigns different weight-
s to different features and compresses the features through
convolution. Besides, to make the initial features more di-
verse, we design a scale-aware enrichment module SEM. It
can make a full use of the size information of the initial fea-
tures and supplement rich multi-scale information. Our main
contributions can be summarized as follows:

e We propose a pyramid shrinking decoder PSD,
which shrinks adjacent features layer by layer and
rejects any isolation feature fusion operation to avoid
the problem of leaping feature fusion.

We introduce the adjacent fusion module AFM to
fuse adjacent features in pairs, which can enhance
the features suitable for the current input sample and
weaken the inappropriate features.

We designed a simple but effective initial scale-
aware enrichment module SEM to supplement the
features extracted from the backbone with rich multi-
scale information.

A comprehensive comparison with 14 latest methods
on five datasets demonstrates the superiority of our
proposed framework.

Related Work

In recent years, more and more salient object detection net-
works based on deep-learning such as (Xia et al. 2017) have
been proposed. Compared with many traditional algorithms
that rely on low-level features, deep-learning-based methods
can use detailed information and semantic information more
effectively. Especially after the emergence of a Fully Con-
volutional Neural Network (FCN), salient object detection
based on deep-learning can better reflect its advantages.
The key of the SOD algorithm based on deep-learning is
to obtain powerful feature expression. To achieve this goal,
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Figure 2: Visual display results of detailed intermediate fea-
tures of PSD. The feature maps correspond to the output fea-
tures of each node in Fig. 1 (c). The whole process shows our
idea of shrinking features.

U-net (Ronneberger, Fischer, and Brox 2015) is proposed
to gradually supplement the feature information in the en-
coder to the decoder. Zhao et al. (2019) sets spatial and
channel attention to help the network pay more attention to
features suitable for the current sample. Zhang et al. (2017)
achieved better performance by improving the simple fusion
module in U-Net. Luo et al. (2017) Predict salient regions
through local and global features. Qin et al. (2019) proposed
a more comprehensive loss function to optimize the results
of saliency detection. Zhang et al. (2018a) proposed a Bi-
Directional Message Passing Model to make better use of
multi-layer features. Liu et al. (2019) capture more useful
features by combining simple pooling operations. Pang et
al. (2020) considered extracting scale information from ad-
jacent features and designed an AIM module to extract more
information between adjacent features. They also designed
SIM to obtain more feature information from the features
themselves. Wei et al. (2019) consider the differences be-
tween the features and design an FCM module, which uses
the feature multiplication method to avoid introducing noise
as much as possible. Zhou et al. (2020) propose Interactive
Two-Stream Decoder (ITSD) to make full use of the rela-
tionship between the salient object boundary map and the
salient object map.

With the development of SOD, the accuracy is closer to
the upper limit. Therefore, more details need to be consid-
ered to achieve further breakthroughs. However, many previ-
ous methods only focus on combining rich feature informa-
tion to obtain better feature expression but ignore the prob-
lem of leaping feature fusion. Although some methods such
as MINet (Pang et al. 2020) and F3Net (Wei, Wang, and
Huang 2019) have realized that leaping feature fusion may
bring negative effects, they only propose related modules to
reduce the impact of the problem. Fundamentally, they did
not avoid leaping feature fusion operations. Differently, we
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Figure 3: The overall display of PESNet, which is based on ResNet-50. SEM is used to enhance the initial features, L1, L2,...,
L5 represents five features extracted from the backbone. AFM is used to shrink and merge adjacent features. WCAT is part of
SEM and AFM. The arrow indicates the direction of data flow. The saliency map indicates the location of the supervision.

propose a decoder that avoids the operation of leaping fea-
ture fusion. PFSNet shrinks adjacent features hierarchically
in an asymptotic manner, and finally achieves the purpose of
multi-feature fusion under the condition of avoiding leaping
feature fusion operations as much as possible.

Method

As shown in Fig. 3, based on the concept of smoothly merg-
ing multiple features, we construct a pyramid shrinking de-
coder PSD to shrink adjacent features in pairs layer-by-layer.
In the decoder, we design an adjacent fusion module AFM
to retain useful information in adjacent feature nodes and
reduce noise. In order to make the initial features more di-
verse, we propose a scale-aware enrichment module SEM
to pre-process the features extracted from the backbone and
get rich multi-scale features. In this session, we will intro-
duce PSD, AFM, and SEM in turn.

Adjacent Fusion Module (AFM)

First of all, we define features to be merged by AFM as par-
ent features, and merged features are child features. AFM
has two main tasks: 1) Child features should inherit features
suitable for the current input sample, and discard inappropri-
ate futures; 2) The child features should maintain the same
dimensions as those of their parents. Since all feature merg-
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ing operations in PSD are performed on adjacent features,
the features to be merged have great similarities. Therefore,
the shared features in parents are features that require special
attention from the child. Therefore, we first extract shared
features from parent features through element-wise multi-
plication and then add shared features back to parent fea-
tures through element-wise addition to enhance them. We
merge the two processed features through the concatenation
operation, and then let them pass through the global average
pooling, 1 x 1 convolution, and softmax activation func-
tion in turn to generate a weight vector. Finally, the weight
vector and the features are correspondingly multiplied to ob-
tain the weighted features. After feature weighting, we use
3 x 3 convolution to compress the channels of the child fea-
tures consistent with the parent features. Since different fea-
tures have different weights, after convolution calculation,
elements with smaller weights are rarely inherited by child
features. In this way, we achieved the goal of letting chil-
dren inherit important features and discard more noise. For
more details about AFM, please refer to Fig. 3. The detailed
definition of AFM can be expressed as:

f. = (0(conv(gap(f,)))ec)ef,, (1)
f, = concat(ﬂ, fg), 2)
fi = conv(fy ®f @ up(fz)), 3)



f = conv(up(f2) & f1 ® up(f2)), )
where f; and f; denote adjacent features, conv represents a
convolution with a batch normalization layer and the Re-
LU activation function, gap denotes global average pool-
ing, ¢ denotes the number of channels of f,, & denotes
element-wise addition, ® means element-wise multiplica-
tion, up represents up-sample operation, and § denotes soft-
max activation function. In short, the AFM first makes both
input features pay more attention to the common elements
through element-wise multiplication, then weights all fea-
tures through the global average pooling operation, and fi-
nally adjusts the number of channels through the convolu-
tion operation and obtains the final result.

Pyramidal Shrinking Decoder (PSD)

The design focus of many previous methods is to aggregate
detailed features and semantic features with different fusion
strategies. But most of them directly fuse features over a
large span, such as PFANet (Zhao and Wu 2019). Although
this operation can supplement rich features to the network.
It will also bring great negative effects. Many methods try
to challenge this problem, such as MINet (Pang et al. 2020)
and F3Net (Wei, Wang, and Huang 2019). But they only use
adjacent features to extract more scale information or pro-
pose related modules to reduce the impact. There is still a
leap of fusion of low-level features and high-level features
in these two methods. This paper proposes for the first time
to extend adjacent features into hierarchical fusion. In this
way, we can use the advantages of adjacent feature fusion
to achieve multi-layer feature fusion and avid leaping fusion
operations. Besides, from the location of the last feature fu-
sion, it can be seen that the framework based on FPN directly
integrates low-level features containing noise, while PFSNet
has eliminated a lot of noise.

As shown in Fig. 3, the core goal of PSD is to achieve
multi-feature integration while avoiding leaping feature fu-
sion operations as much as possible. PSD is a structure
composed of AFMs, and the process of merging features
is carried out in adjacent node pairs. We construct PSD
on the backbone of ResNet-50. Assuming that the size of
the input picture is C' * W x H, we can get five features
{fili = 1,2, ..., 5} with sizes [Q/I, ] from the backbone. In
the first step, we merge f; and f;; through AFM to obtain
{fi|¢ = 1,2,3,4}, and then perform similar operations to
obtain {f;|¢ = 1,2,3}, and continue to perform the above
process twice to get the final result f;. During this process,
feature shrinking is only performed between adjacent fea-
tures. In this way, our decoder can avoid leaping fusion op-
erations as much as possible.

Specifically, PSD contains four layers of feature shrink-
ing processes, of which there are 10 adjacent feature fusion
modules. If we consider 10 fusion results separately, we can
get the results of gradual fusion of any adjacent features of
the backbone. As shown in Fig. 2, node in the third row and
first column can get the fusion result of the first three fea-
tures of the backbone. Taking into account the weighted se-
lection effect of AFM, PSD can selectively enlarge or reduce
the influence of features extracted from the backbone, there-
by obtaining a diversified feature expression.
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Dilated convolution

Figure 4: The effect of dilated convolution with dilated rate
D = 2 under different size images.

Scale-aware Enrichment Module (SEM)

After obtaining the effective feature combination decoder
PSD, we design SEM to enable the decoder to obtain rich-
er initial feature information. The features extracted from
the backbone have sufficient size information and the hi-
erarchical information between details and semantics. SEM
makes full use of them to provide more useful information
for the initial features. As shown in Fig. 4, the same dilated
convolution can get different results on images of different
sizes, and the superposition of different convolution result-
s can produce more complete feature expression. Based on
this, we propose SEM in this paper. The specific structure is
shown in Fig. 3. The specific definition of the model can be
expressed as:

i = (6(conv(gap(ti)) ec)et;, (5)
t; = concat(f;, conv(fy))), (6)
- { deonv(f;), i=5
f, = ~ , ;o (D
deonv(f; @ up(fiq1)), i=1,...,4

where f; means the i-th feature extracted from the back-
bone, dconv denotes the combination of dilated convolution,
batch normalization and Relu activation function, ¢ means
the number of channels of t;.

Loss Function

Unlike many other methods, our network only needs to be
supervised in one location. PFSNet uses Binary Cross En-
tropy and Intersection Over Union as loss functions which
are commonly used in the SOD field such as (Wei, Wang,
and Huang 2019) to train our network. It can be defined as:

Etot = ACbce + Eioua (8)
where intersection over union loss can be expressed as:
Z Z mul(i, j)
1=0
Ligy =1 — = )

where (i, j) represents the pixel position of the image. H
and W represent the height and width of the image, respec-
tively. sum(i, j) represents the sum of the predicted saliency
map and the ground-truth map at (7, j) pixel, and mul(i, j)
represents the product of the predicted saliency map and the



ground-truth at (¢, j) pixel. € is set to 1e-6 to prevent division
by zero. Ly can be expressed as:

Loce ==Y > (g(i, 7)log(p(i, 1))

i=0 j=0
+ (1 = g(i,7))log(1 = p(i, 5))),

where g represents ground-truth map, p represents the pre-
dicted saliency map. Our training goal is to minimize L.

(10)

Experiment
Datasets

In order to prove the superiority of the method proposed in
this paper, we choose the five most convincing benchmark
datasets in the SOD field as test sets. DUT-OMRON (Yang
et al. 2013) contains 5,168 challenging images with pixel-
level annotations, and ECSSD (Yan et al. 2013) contains
1,000 semantically complex images and annotation maps.
HKU-IS (Li and Yu 2015) contains 4,447 images with mul-
tiple discontinuous salient objects that will intersect the im-
age boundary. PASCAL-S (Li et al. 2014) includes 850 nat-
ural images. These images are selected from PASCAL VOC
2010 segmentation challenge and are pixel-wise annotated.
DUTS-TE (Wang et al. 2017), the test set in DUTS, con-
tains 5,019 challenging images and their annotations. Like
many previous methods, we choose DUTS-TR, the training
set of DUTS (Wang et al. 2017), to train our network, which
contains 10,553 images and corresponding annotated maps.

Evaluation Metric

In order to conduct experimental evaluation more compre-
hensively, we have selected four widely used evaluation met-
rics to evaluate the performance of the algorithm. They are
Precision-Recall, Mean Absolute Error (M AFE), F-measure
(F3) and E-measure(L¢). The saliency map predicted by the
network is a non-binary map, so when a different threshold
is selected to binarize the prediction map, different precision
and recall values can be obtained. So we use the precision-
recall curve to comprehensively evaluate the prediction re-
sults. The second evaluation metric MAE is defined as the
average absolute error between all elements between the pre-
dicted image and the ground-truth map.

1 H W
o 2o 2 et i) =gl an

i=0 j=0

MAE =

where p represents the predicted saliency map, and g rep-
resents the corresponding ground-truth map. (H, W) rep-
resents the size of the image. Another indicator F-measure
score is a metric that comprehensively considers recall and
precision, and is defined as follows:

(1 + B?)Pricision + Recall
B2 Precision + Recall

; 12)

Fg =
where 32 is usually set to 0.3 to emphasize the proportion-
al relationship between recall and precision. This coefficient
is the recommended value by (Yang et al. 2013). A higher
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F-measure value indicates a more accurate prediction result.
Here we choose the largest value calculated with different
thresholds as the evaluation result. The E-measure proposed
in (Fan et al. 2018) is also a general evaluation metric in the
SOD field and the value of E-measure is directly proportion-
al to the quality of the predicted result. This paper will also
use it to evaluate experimental results.

Implementation Details

DUTS-TR is used to train PFSNet. We use PyTorch to con-
struct our network and train it on a PC with a GTX1080TI
GPU. Set batch size to 20, epochs to 50, use Stochastic Gra-
dient Descent (SGD), set the momentum to 0.9, and weight
decay to 0.0005. Horizontal flipping, random cropping, and
multi-scale input images are used to pre-process the images.
ResNet-50 pre-trained on ImageNet was used as the back-
bone. We set the maximum learning rate of the backbone to
0.005 and the other parts to 0.05. And the learning rate first
increases and then decreases with the training process. The
size of each image is adjusted to 352 x 352 to predict the
saliency map without any post-processing.

Comparison with State-of-the-arts

In order to fully demonstrate the superiority of the proposed
method, we evaluated and tested 14 recent methods with the
aforementioned evaluation metrics, including C2S (Li et al.
2018), BMPM (Zhang et al. 2018a), GAPR (Zhang et al.
2018b), CiPA-R (Liu, Han, and Yang 2018), BASNet (Qin
et al. 2019), CPD-R (Wu, Su, and Huang 2019), PoolNet
(Liu et al. 2019), BANet (Su et al. 2019), MINet (Pang et al.
2020), U2Net (Qin et al. 2020), ITSDNet (Zhou et al. 2020),
DFINet (Liu, Hou, and Cheng 2020), GateNet (Zhao et al.
2020), GCPANet (Chen et al. 2020). In order to ensure fair-
ness, we use a unified evaluation code to evaluate the salient
prediction map published by each method.

Quantitative Comparison. Tab. 1 shows the compari-
son results of 15 methods on the three evaluation met-
rics. Our method performs well on multiple datasets, es-
pecially ECSSD, HKU-IS, and DUTS-TE, which demon-
strates the superiority of the proposed model. For the rel-
atively simple dataset ECSSD, the performance improve-
ment is valuable. The best result of the MAE under EC-
SSD in 2019 was 0.035, and it reached 0.033 in 2020, and
we reached 0.031. For the complex dataset DUTS-TE, F-
measure reached 0.880 in 2019 and 0.888 in 2020, while
PFSNet reached 0.898, which has exceeded the best im-
provement rate of the previous year. Besides, Fig. 5 shows
the precision-recall curves and F-measure curves of various
methods. As can be seen, our method still performs well un-
der multiple thresholds, and two types of curves exceed most
comparison methods. In short, considering the comprehen-
sive experimental results, our method has absolute advan-
tages in the case of fair comparison of multiple datasets and
multiple evaluation metrics.

Qualitative Comparison. In order to more intuitively il-
lustrate the advantages of the proposed algorithm, we vi-
sualize the prediction results of 8 state-of-the-art methods
in different scenarios. As shown in Fig. 6, our method can



- ECSSD HKU-IS DUTS-TE DUT-OMRON PASCAL-S
Method FiT | MAEL | Bt | FgT | MAEL| Bet | Fi1 | MAEL | Eet | Fit | MAEL | Eet | Fg1 | MAE] | Eet
Ours 0.952 | 0031 ] 0028 | 0.043 | 0.026 | 0.956 | 0.808 | 0.036 | 0.002 | 0.823 | 0.055 | 0.875 | 0.881 | 0.063 | 0.857
GateNety, | 0945 | 0.040 | 0.924 | 0.933 | 0.033 | 0.949 | 0.888 | 0.040 | 0.889 | 0.818 | 0.055 | 0.862 | 0.875 | 0.068 | 0.852
U2Nety, | 0951 | 0.033 | 0.924 | 0.935 | 0031 | 0.048 | 0.873 | 0.045 | 0.886 | 0.823 | 0.054 | 0.871 | 0.862 | 0.076 | 0.841
DFIy 0.949 | 0.035 | 0.024 | 0.934 | 0031 | 0951 | 0.886 | 0.039 | 0.892 | 0.818 | 0.055 | 0.865 | 0.885 | 0.065 | 0.857
MINety, | 0047 | 0033 | 0027 | 0.035 | 0.029 | 0.953 | 0.884 | 0.037 | 0.898 | 0.810 | 0.055 | 0.865 | 0.873 | 0.064 | 0.852
GCPANety | 0948 | 0.035 | 0.920 | 0.938 | 0.031 | 0.049 | 0.888 | 0.038 | 0.801 | 0.812 | 0.056 | 0.860 | 0.876 | 0.061 | 0.850
TTSDNety, | 0.947 | 0.034 | 0927 | 0.934 | 0031 | 0952 | 0.883 | 0.041 | 0.895 | 0.821 | 0.061 | 0.863 | 0.876 | 0.064 | 0.853
BANet;, | 0945 | 0035 | 0928 | 0.031 | 0.032 | 0.950 | 0.872 | 0.040 | 0.892 | 0.803 | 0.059 | 0.860 | 0.870 | 0.070 | 0.855
BASNet;y | 0942 | 0.037 | 0.921 | 0.928 | 0.032 | 0.946 | 0.860 | 0.043 | 0.884 | 0.805 | 0.056 | 0.869 | 0.857 | 0.076 | 0.847
PoolNetyy | 0944 | 0039 | 0.924 | 0.933 | 0.032 | 0949 | 0.880 | 0.040 | 0.889 | 0.808 | 0.056 | 0.863 | 0.869 | 0.074 | 0.850
CPDqy 0.939 | 0.037 | 0.925 | 0.025 | 0.034 | 0.044 | 0.865 | 0.043 | 0.887 | 0.797 | 0.056 | 0.866 | 0.864 | 0.072 | 0.849
C2SNetys | 0910 | 0.055 | 0.914 | 0.896 | 0.048 | 0.927 | 0.807 | 0.063 | 0.846 | 0.758 | 0.072 | 0.829 | 0.845 | 0.082 | 0.840
BMPM;s | 0928 | 0.044 | 0914 | 0.920 | 0.030 | 0.937 | 0.852 | 0.049 | 0.859 | 0.774 | 0.063 | 0.839 | 0.857 | 0.073 | 0.838
PAGRys | 0927 | 0061 | 0014 | 0018 | 0.048 | 0.939 | 0.854 | 0.055 | 0.880 | 0.771 | 0.071 | 0.842 | 0.851 | 0.092 | 0.846
PICA;s | 0935 | 0046 | 0913 | 0018 | 0.043 | 0.936 | 0.860 | 0.051 | 0.862 | 0.803 | 0.065 | 0.841 | 0.863 | 0.075 | 0.833

Table 1: The comparison of quantitative results includes the maximum F-measure (£}, the larger the better), MAE (the smaller

the better) and E-measure (E¢, the larger the better). The best and runner-up results are marked with red and blue, respectively.
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Figure 5: The precision-recall curve and F-measure curve of 15 methods under four benchmark datasets. The results show that
PFSNet has surpassed the previous method with a variety of threshold options.

obtain outstanding results for pictures containing objects of
different scales. In addition, our method can detect all tar-
gets more comprehensively in a scene containing multiple
salient objects. From the comparison in the seventh row, we
can also see that in complex scenes, our results can better
shield background noise and accurately capture salient ob-
jects. From the comparison result in the sixth row, we can
see that our model can accurately distinguish confusing ob-
jects. In short, our method is prominent in multi-scene im-
ages, multi-object images, complex background images, and
images containing confusing objects. This can also illustrate
the effectiveness of the proposed algorithm.

Ablation Study

In the SEM model, in order to obtain the multi-scale infor-
mation of the image, we use the convolution with the dilated
rate D = 2. In order to verify the influence of this hyper-
parameter, we designed the following experiment. We set
D to 1, 2, 3, 4 in turn, and the other structures remain un-
changed. The evaluation results are shown in Tab. 2. We can
see that the best results can be obtained when D = 2, and as
D increases, the performance decreases. Therefore, D = 2
is used when referring to this parameter in the subsequent
experiments. In addition, an ablation experiment is designed
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Figure 6: Visual comparison with seven state-of-the-art methods. Obviously, our method can get a clearer and more accurate

result in various complex scenarios.

HKU-IS

F;T MAE] FEet | Fit MAE] E¢1

0.950  0.034 0926 | 0.941 0.029  0.954

0.952  0.031 0.928 | 0.943 0.026  0.956

0.950 0.032 0927 | 0.940  0.027 0.954

Ao~ g !

0946  0.035 0927 | 0937 0.028  0.951

Table 2: The effect of dilated convolution in SEM is com-
pared when dilated rate D takes different values. The best
result is obtained when D = 2.

- DUTS-TE
method Fg T MAE| E¢t
basenet 0.833 0.055 0.856
basenet+PSD 0.885 0.039 0.890
basenet+SEM 0.880 0.038 0.887
basenet+PSD+AFM 0.891 0.038 0.898
basenet+PSD+AFM+SEM | 0.898 0.036 0.902

Table 3: Ablation study results of the gradual combination
of the modules mentioned on the DUTS-TE dataset.

to better verify the effectiveness of each module in PFSNet.
We use MAE, Fg and E¢ to compare different methods un-
der the DUTS-TE dataset. The experiment selects ResNet-
50 as the backbone and selects direct concatenation opera-
tion to merge the features of each layer of ResNet-50 as the
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basic network. Then PFSD, AFM, and SEM are embedded
into PFSNet in turn. As shown in Tab. 3, PSD plays a major
role in PFSNet, which also proves the effectiveness of the
No Leaping Fusion Operations. Besides, with the addition
of modules, the test performance gradually improves, which
demonstrates the effectiveness of the proposed modules.

Conclusion

In this paper, we propose a pyramidal feature shrinking net-
work PFSNet for salient object detection. We emphatically
consider the differences of features at different levels and
propose a decoder PSD that gradually shrinks adjacent fea-
ture nodes in an asymptotic manner. In the decoder, we de-
sign an adjacent fusion module AFM to retain useful infor-
mation in adjacent feature nodes and reduce noise. In ad-
dition, In order to make the initial features more diverse,
we design a scale-aware enrichment module SEM to pre-
process the features extracted from the backbone. Finally,
extensive quantitative and qualitative experiments demon-
strate that the proposed intuitive framework outperforms 14
state-of-the-art approaches on five public datasets.
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