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ABSTRACT

Few-shot learning aims to recognize the novel categories from
a few examples. However, most of the existing approaches
usually focus on general image classification and fail to han-
dle subtle differences between images. To alleviate this is-
sue, we propose a trilinear spatial-awareness network for few-
shot-grained visual recognition, called S3Net, which is com-
posed of a spatial selection module, structural pyramid de-
scriptor, and subtle difference mining module. Specifically,
we first build the global relation to strengthen the features
by spatial selection module. The structural pyramid descrip-
tor then constructs a multi-scale representation for enhancing
the rich contextual information by exploiting different recep-
tive fields in the same feature layer. Furthermore, a similarity
loss based on local descriptors and a global classification loss
is design to help the network learn discrimination capability
by handling subtle differences in confused or near-duplicated
samples. Extensive experiments on 4 few-shot fine-grained
benchmarks demonstrate that our proposed approach is effec-
tive and outperforms state-of-the-art models by large margins.

Index Terms— few-shot learning, fine-grained classifi-
cation, spatial selection, structural pyramid, subtle difference
mining

1. INTRODUCTION

Few-shot learning has recently attracted extensive research at-
tention due to its similarity to human perception way on novel
concepts in real-world scenarios. Given a few annotated sam-
ples, the goal of few-shot learning is to find a generalized
feature embedding when facing novel testing samples. With
the development of the convolutional neural networks, few-
shot learning [1, 2, 3, 4] has made significant breakthroughs
in general object recognition tasks. However, learning to rec-
ognize fine-grained objects under few-shot settings is still less
explored and the process of the human-annotation usually
needs expert knowledge of the corresponding field, which are
labour- and time-consuming.

∗ Jia Li is the corresponding author.

Most of the existing works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12] in few-shot learning mainly consists of two groups: near-
est neighbor based approaches [1, 2, 3, 4, 5, 6, 7] and atten-
tion mechanism based approaches [8, 9, 10, 11, 12]. The first
group attempts to calculate the similarity scores of nearest
neighbor samples by designing an effective distance function
loss to optimize the model. For example, Prototype Net [4]
constructs the center of each class of the support set to com-
pare the samples of its nearest neighbor query set by employ-
ing euclidean distance. Relation Net [1] extracts the tensor
features to calculate a relation score loss by concatenating
the pair features. Li et al. [3] further explore the role of lo-
cal descriptors to align k-nearest neighbor local features and
propose Deep Nearest Neighbor Neural Network (DN4). Al-
though these works achieve significant successes in few-shot
learning tasks, features extracted from the standard network
usually bring in confusing information due to the ignoring of
dominative object enhancement.

The second group focuses on enhancing the discrimina-
tive feature representation by paying attention to the domi-
native region. For example, Wu et al. [10] introduce a dual
correlation attention mechanism and a deformable feature ex-
tractor to obtain the intensified features, where these features
concatenate together and learn their relationship score by
position-aware relation network. Wei et al. [8] first tackle the
few-shot fine-grained problem by jointing a piecewise map-
ping technique and bilinear feature learning module. Zhu et
al. [9] propose to utilize a multi-attention module to high-
light the dominative information for few-shot fine-grain im-
age classification. Despite their utilization of attention mech-
anisms, the contextual understanding of spatial relations, es-
pecially the multi-scale representation, is less explored.

To address this problem, in this paper, we investigate
three different aspects for exploiting spatial information in
fine-grained few-shot learning. Based on this investigation,
we proposed a trilinear spatial-awareness network in Fig. 1,
namely S3Net for selecting, constructing, and finding subtle
differences in spatial dimension for few-shot features. In our
proposed S3Net, we first propose to strengthen the content-
aware features with a spatial selection module, which builds
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Fig. 1. The framework of our proposed S3Net approach mainly contains three components. 1) Spatial Selection Module: The
module is applied to strengthen the spatial information and suppress confusing information. 2) Spatial Structural Descrip-
tor Module: The module can construct rich representation by structural descriptor based on multi-scale features. 3) Subtle
Difference Mining: The subtle differences enable the model to mine and learn discrimination capability.

global relations in the spatial dimension. Second, with this
spatial-selected feature, we exploit the pyramid pooling en-
coder for constructing structural descriptors for fine-grained
feature measurements, which is inspired by [13, 14] but en-
hancing the rich representation for global features. Our struc-
tural descriptor builds a multi-scale understanding by trans-
forming different receptive fields in the same feature layer.
Last but not least, different from the conventional metric
learning methods [4] in few-shot learning, we propose to
learn different prototypes by exploiting local descriptors with
a similarity-based cosine loss and cooperate global classi-
fication loss. This helps the network discrimination capa-
bility of handling subtle differences for confused or near-
duplicated samples. In this way, the proposed approach
achieves state-of-the-art results on four few-shot fine-grained
benchmarks, i.e., Stanford Dogs [15], Stanford Cars [16],
CUB-200-2010 [17], and CUB-200-2011 [18].

Main contributions of our proposed approach are summa-
rized as follows:

•We propose a trilinear spatial-awareness network to ad-
dress the problem of few-shot fine-grained visual recognition.

•We design a spatial structural descriptor module that can
encode and fuse the features of multi-scale information.

•We conduct extensive experiments on four few-shot fine-
grained benchmarks and validate that our approach is effec-
tive and outperforms state-of-the-art models.

2. THE APPROACH

Consider a support set S, which contains N labeled sam-
ples {Xn}Nn=1 ∈ RC×W×H of C channels, width W and
height H and corresponding categorical labels {yn}Nn=1 ∈
[1, 2, · · · , c]. The feature maps Xn are extracted from a stan-
dard embedding network. The goal of few-shot learning is to
learn embedding parameter Θ and determine the category of
samples of the query set Q.

2.1. Spatial Selection Module

The feature maps extracted from the backbone usually em-
ploy the receptive field with uniform sliding in the local win-
dow. The factor makes it difficult to select fine-grained spa-
tial features. Inspired by the non-local structure [19] for ob-
ject detection tasks, we attempt to build the global spatial-
awareness relationship, with the response at a spatial feature
map as a weighted sum of all spatial feature maps, to form
an attention map. The constructing attention map can be as a
spatial amplifier, which selects effective regional features and
suppresses the confusing regional features.

Following this thought, for each regional descriptor xm
n

(m = 1, 2, · · · ,M) of Xn, its global relationship features
with self-attention can be defined as:

x̃m
n =

1

C

M∑
j=1

(F(xm
n )T ,G(xj

n))I(xj
n)T , (1)

where F , G and I denote a linear embedding function. C in-
dicates the normalization factor. Further, by employing Eq 1,
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Fig. 2. Spatial self-attention module. Conv represents the
1× 1 convolution.

the strengthening features is represented as:

zmn = Wzx̃
m
n + xm

n , (2)

where Wz is the weight matrix parameter to be learned.
Therefore, we aggregate each regional feature zmn by Eq. 2
to get the spatial selection features Zn = {zn}Mm=1 ∈
RC×W×H , as shown in Fig. 2.

2.2. Structural Pyramid Descriptor

Classical feature representation in few-shot learning usu-
ally applies single-scale representation to encode global fea-
tures [4] or tensor features [3]. Different from the single-
scale representation, we inspect and find that multi-scale
representation plays an important role in visual comprehen-
sion [13, 14]. Keeping this in our mind, we design a structural
pyramid descriptor to construct contextual information.

Specifically, we first exploit the spatial pyramid pool-
ing [13] to encode Zn (e.g., 1 × 1, 2 × 2, ..., P × P scales)
to obtain the multi-scale features {Sp}Pp=1. The multi-scale
features can maintain the structure information in the image.
Generally speaking, each region on large-scale features con-
tains more rich information than small-scale features due to
the utilization of larger receptive fields. Therefore, for the
few-shot fine-grained visual recognition task, how to incor-
porate both small- and large-scale features in one unified em-
bedding is key. To address this issue, we leverage bilinear
interpolation to magnify the large-scale features to the maxi-
mal small-scale features of the same local region. This allows
the large-scale features to play a uniform encoding effect with
the small-scale and to attach more importance. It has the form

S̃p = B(Sp), (3)

where B represents the bilinear interpolation operation. These
features S̃p then are aggregated as the dense features S̃n by

S̃n =

P∑
p=1

S̃p. (4)

As a result, based on the spatial selection module, dense
features constructed from the structural pyramid descriptor
incorporate rich and benefit feature representation.

2.3. Subtle Difference Mining

The loss function is crucial for the training model, which en-
ables the feature representations to acquire the corresponding
peculiarities. Most of the existing approaches [5, 4] usually
calculate the similarity scores by the global features and ig-
nore the local difference mining. To alleviate this issue, we
measure the similarity scores between dense features, which
encode the fine-grained information, and mine the pair-wise
subtle difference for each regional feature representation due
to fusion of small- and large-scale features based on spatial
selection enhancement.

Specifically, the center Cn ∈ RC×W×H of each category
of support set can be expressed as follow

Cn =
1

|Sn|
∑

(S̃n,yn)∈Sn

S̃n, (5)

where Sn is the set of images labeled with categories n. For
the features {Xi ∈ RC×W×H}Qi=1 extracted from network in
query set Q, the local loss ( i.e., few-shot loss) between the
features Xi and the center Cn can be represented by

Llocal = −
Q∑
i=1

log
exp(−H(Cn,K(J (Xi)))∑c

n′=1 exp(−H(Cn′ ,K(J (Xi)))
, (6)

where J and K express the spatial self-attention operation
and structural pyramid descriptor module. H is the metric
distance function (e.g., cosine distance). Moreover, the global
loss with a cosine linear classifier is utilized to assist local
loss. Note that different from the dot product, cosine linear
classifier between the features and the weight parameter for
each category can increase the inter-class variations and re-
duce the intra-class variations. It is defined by

Lglobal = −
Q∑
i=1

log
exp(cos(W,GAP (Xi)))∑c

i′=1 exp(cos(W,GAP (Xi′)))
, (7)

where cos and GAP are the cosine distance and global av-
erage pooling. W is the weight parameter of each category.
Therefore, the cooperative loss is represented as follow

Ltotal = Lglobal + λLlocal, (8)

where λ is the hyperparameter, which maintains the balance
both the Lglobal and Llocal. During the test stage, the local
loss Llocal only is used to calculate the similarity scores to
classifier the novel query set.
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Table 1. Performance comparison of the state-of-the-art and our work on benchmark datasets. Results are the average accuracies
with 95% confidence intervals on 5-way 1-shot and 5-way 5-shot tasks. Bold and underline in each column are marked with
the best and runner-up results, respectively.

Method
5-way Acc (%)

Stanford Dogs Stanford Cars CUB-200-2010 CUB-200-2011 Avg
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Relation Net [1] 43.29±0.46 55.15±0.39 47.79±0.49 60.60±0.41 58.99±0.52 71.20±0.40 – – 50.02 62.32
ConvaMNet [2] 49.10±0.76 63.04±0.65 56.65±0.86 71.33±0.62 52.42±0.76 63.76±0.64 – – 52.72 66.04
DN4 [3] 45.73±0.76 66.33±0.66 61.51±0.85 89.60±0.44 53.15±0.84 81.90±0.60 – – 53.46 79.28
LRPABN [12] 45.72±0.75 60.94±0.66 60.28±0.76 73.29±0.58 – – – – 53.00 67.12
Matching Net [5] 35.80±0.99 47.50±1.03 34.80±0.98 44.70±1.03 45.30±1.03 59.50±1.01 – – 38.63 50.57
Prototypical Net [4] 37.59±1.00 48.19±1.03 40.90±1.01 52.93±1.03 37.36±1.00 45.28±1.03 – – 38.61 48.80
MAML [6] 44.84±0.31 58.61±0.30 47.25±0.30 61.11±0.29 58.13±0.36 71.51±0.30 – – 50.07 63.74
adaCNN [20] 42.16±0.43 54.12±0.39 41.88±0.40 49.87±0.37 56.76±0.50 61.05±0.44 – – 46.93 55.01
GNN [7] 46.98±0.98 62.27±0.95 55.85±0.97 71.25±81.53 51.83±0.98 63.69±0.94 – – 51.55 64.74
MattML [9] 54.84±0.53 71.34±0.38 66.11±0.54 82.80±0.28 – – 66.29±0.56 80.34±0.30 62.41 78.16

Ours 63.56±0.49 77.54±0.35 71.19±0.50 84.40±0.34 64.27±0.50 78.02±0.38 72.30±0.51 84.23±0.33 67.83 81.05

3. EXPERIMENTS

3.1. Experiment Setting

Dataset. We use four datasets (i.e., Stanford Dogs [15],
Stanford Cars [16], CUB-200-2010 [17], and CUB-200-
2011 [18]). Stanford Dogs contains 120 subcategories (70
categories for training, 20 categories for validation, and 30
categories for testing) of dogs with 20,580 images. Stanford
Cars includes 196 subcategories (130 categories for training,
17 categories for validation, and 49 categories for testing) of
cars with 16,185 images. CUB-200-2011, consisting of 200
subcategories (130 categories for training, 20 categories for
validation, and 50 categories for testing) of birds with 16,185
images, is the extended version of CUB-200-2010 with 6033
images. For the four benchmarks, we follow [3] to split them.
Network architectures. Following the previous works [9],
we adopt the standard feature extraction network Conv4.
This contains four convolutional modules, each of which con-
sists of a convolutional layer with 3×3 size followed by batch
normalization layer and ReLU layer. Besides, a 2 × 2 max-
pooling is appended for the first two convolutional modules.
Implementation details. All experiments are implemented
by Pytorch with one GTX1080Ti GPU. SGD is adopted as an
optimizer with an initial learning rate of 0.1, which decreases
to 0.006 at 60 epoch and then times 0.2 every 10 epoch. Each
epoch contains 1200 episodes. During the test, 2000 episodes
are randomly sampled from datasets and the accuracy with
95% confidence intervals is reported on these episodes.

3.2. Comparison with the State-of-the-art

To evaluate the superiority of our approach, we conduct an
comparison with the state-of-the-art models on benchmark
datasets. The experimental results are reported in Tab. 1. As

Table 2. Ablation studies of the linear classifier.

Dataset Method 5-way Acc (%)
1-shot 5-shot

Stanford Dogs BL 57.35±0.49 72.74±0.37
BL++ 60.48±0.49 74.27±0.37

Stanford Cars BL 61.73±0.49 80.42±0.33
BL++ 66.91±0.48 81.68±0.32

CUB-200-2011 BL 62.21±0.49 78.20±0.37
BL++ 68.46±0.50 82.06±0.35

can be seen in Tab. 1, compared with the previous approaches,
our approach achieves the highest performance on four few-
shot fine-grained datasets. Specifically, for 5-way 1-shot task
on benchmarks, we can increase by 17.81%, 14.37%, 29.22%,
and 5.42% on average over Relation Net [1], DNN [3], Pro-
totype Net [4], MattML [9]. For 5-way 5-shot task, we also
can gain by 18.73%, 1.77%, 32.25%, and 2.89 % improve-
ment with a large margin on average over Relation Net [1],
DNN [3], Prototype Net [4], MattML [9]. The results mean
that our approach enables the network to better extract the
subtle discriminant features, which are a benefit for the simi-
larity measure of fine-grained images.

3.3. Ablation Analysis

Impact of linear classifier. We study the linear classifier
on the few-shot fine-grained recognition, as shown in Tab. 2.
‘BL’ and ‘BL++’ are the baseline and baseline++, where the
baseline is the local loss and linear classifier which base-
line++ is the local loss and cosine linear classifier. From
Tab. 2, we obverse that ‘BL++’ achieves higher performance
than ‘BL’ in 5-way 1-shot and 5-shot tasks. This means that
the model benefits from a cosine classifier, which can better
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Table 3. Ablation studies of the spatial self-attention module.

Dataset BL++ SSA 5-way Acc (%)
1-shot 5-shot

Stanford Dogs X 54.34±0.44 71.11±0.38
X X 63.56±0.49 77.54±0.35

Stanford Cars X 65.53±0.48 81.21±0.36
X X 71.19±0.50 84.23±0.33

CUB-200-2011 X 53.14±0.43 73.12±0.38
X X 72.30±0.51 84.40±0.34

Fig. 3. Illustration of dimension reduction in Cub-200-2011
dataset. The images are randomly sampled in a 5-way 20-shot
and 30-shot tasks and each color indicates different classes.

enhance the fine-grained features of the subcategory.

Impact of spatial self-attention module. Attention mecha-
nism is utilized to focus on the region of interest. We evalu-
ate the influence of spatial self-attention module for few-shot
fine-grained image classification in Tab. 3. ‘SSA’ is the spatial
self-attention module. As can be seen in Tab. 3, the combi-
nation of ‘BL++’ and SSA obtain improvement with a large
margin in both 5-way 1-shot and 5-way 5-shot tasks. We also
conduct visualization by CAM [21] and t-sen [22] for the two
modules, as presented in Fig. 3 and Fig. 4. The corrected
features by the spatial self-attention module demonstrate the
ability to grasp the structure information.

Impact of spatial pyramid pooling. Spatial pyramid pooling
can keep spatial information by pooling in different spatial
bins. Based on baseline++ and spatial attention, we discuss
the effect of improved spatial pyramid pooling for few-shot
visual classification, as shown in Tab. 4. Four grid scales
(1 × 1, 7 × 7, 10 × 10, 21 × 21) are exploited for spatial
pyramid pooling block. ‘GAP’ and ‘BI’ mean global aver-
age pooling and bilinear interpolation operation, respectively.
From Tab. 4, we observe that ‘SPP+BI’ obtains the best per-
formance in both 5-way 1-shot and 5-shot tasks. The reason
may that the spatial pyramid aggregation reduces confusing
information and enhances the utilization of effective features.

Fig. 4. Visual illustration of feature maps from the last layer
of the model on few-shot benchmark datasets.

Table 4. Ablation studies of the spatial pyramid pooling.

Dataset Method 5-way Acc (%)
1-shot 5-shot

Stanford Dogs

GAP 63.53±0.49 77.52±0.35
SPP 63.52±0.49 77.51±0.35

SPP+BI+GAP 63.52±0.49 77.51±0.35
SPP+BI 63.56±0.49 77.54±0.35

Stanford Cars

GAP 71.02±0.50 84.06±0.33
SPP 71.09±0.50 84.10±0.33

SPP+BI+GAP 71.13±0.50 84.12±0.33
SPP+BI 71.19±0.50 84.23±0.33

CUB-200-2011

GAP 72.28±0.51 84.18±0.34
SPP 72.22±0.51 84.19±0.34

SPP+BI+GAP 72.15±0.51 84.20±0.34
SPP+BI 72.30±0.51 84.40±0.34

4. CONCLUSION

In this paper, we propose a trilinear spatial-awareness net-
work (namely S3Net) to overcome the challenge of few-shot
fine-grained recogintion. In S3Net, a spatial selection mod-
ule first is utilized to strengthen the content-aware features
by building the spatial global relation. We then construct
the multi-scale features by a structural pyramid for enhanc-
ing rich representation in global features. Finally, we design
a local similarity loss by the subtle differences and cooperate
a global loss to learn the discriminative features in an end-
to-end manner. Extensive experiments on four benchmarks
show the effectiveness and superiority of our proposed ap-
proach and achieve state-of-the-art results.
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