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ABSTRACT

Understanding an image with 3D representations has been an
increasingly attractive topic in computer vision. The state-of-
the-art 3D reconstruction methods usually focus on the recon-
struction of the holistic object, while missing important part
information, which is crucial in robotic interaction and vir-
tual reality applications. To solve this issue, we make the first
attempt to reconstruct the 3D models with part-level represen-
tations in a unified framework. With the input of the single-
view images, we first develop a feature enhancement encoder
to incorporate discriminative local features into the feature
representation. The local features are selected adaptively by
a learnable local awareness module. Then the enhanced local
features are fused with the global branch to form the 3D rep-
resentations. We then develop a 3D part generator to decode
the image priors to 3D parts with a 3D focal loss, which en-
ables the representations of small parts. Experimental results
indicate that our model generates reliable part-level structures
while achieving state-of-the-art performance in object-level
recovering.

Index Terms— 3D reconstruction, single-view, part-level

1. INTRODUCTION

Recovering an image into 3D representation is a crucial step
to understand and interact with the world. Recent 3D re-
construction approaches [1, 2] have shown promising results
in modeling single image into 3D object, which can serve
as prerequisites for many computer vision tasks, e.g., scene
reconstruction[3, 4, 5, 6], medical identification [7, 8] and
motion capture [9, 10].

Many efforts have been made to generate 3D represen-
tations from 2D images, which can be roughly divided into
two categories. The first category reconstructs the 3D model
with multiple views of the same object. With these captured
images, classical algorithms usually rely on shading informa-
tion [11] or Epipolar Geometry constraints, such as Struc-
ture from motion [3] and vSLAM [12]. These methods es-
timate the transformation matrix with the matched keypoints
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Fig. 1. The motivation of part-level 3D reconstruction. a)
Input single-view image. b) Conventional object-level recon-
struction task. b) Part-level reconstruction task in this paper.

of different images to reconstruct the object. On the other
hand, many deep models [13, 14] have been proposed to esti-
mate 3D structure with multi-view inputs. For example, 3D-
R2N2 [2] reconstructs and learns the relationship between
multi-view images by adopting a 3D recurrent neural net-
work. Kar et al. [1] build a 3D grid reasoning model to re-
project the multi-view feature to a unified feature grid. Xie et
al. [15] propose a two-stage coarse-to-fine model to predict
the voxel model with a weight-sharing encoder. Methods of
this category usually rely on auxiliary information and face
difficulties at monocular images.

Methods of the second category reconstruct the 3D model
from a single monocular image, which can be more easily
applied to unrestricted scenarios. For example,in [16, 17], an
Octree-based 3D network is constructed to represent the 3D
objects by a convolution and deconvolution architecture. With
the proposal of Generative Adversarial network [18], Wu et
al. [19] leverage the advantages of volumetric convolutional
network and generative adversarial network. In [20], a 2.5D
sketch is predicted as prior and re-projected to reconstruct the
final 3D model. Moreover, there are also some other works
to reconstruct 3D models with different representations, such
as Point Cloud [21] and mesh model [22]. These methods
generate promising results, but these works only focus on the
holistic model reconstruction without considering the parts of
the model which are crucial for CAD and other local interac-
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Fig. 2. Overview of our 3D part-level reconstruction framework. Our framework is composed of a feature enhancement encoder
and a 3D part generator. The input image is first passed by a VGG backbone to extract the image features and then fed into the
feature enhancement module which enhances the local features with a the proposed LAM. After that, the overall features are
fed into the 3D part generator to construct the holistic object with part-level information.

tive application usages.

Motivated by the 3D part segmentation model [23] and
large-scale part-level annotations [24], it becomes realism to
construct the 3D object with fine-grained part structures. As
illustrated in Fig. 1, the classical object-level reconstruction
task aims to estimate the holistic object from a single monocu-
lar input, while the part-level task has the potential to provide
fine-grained information, e.g., the armrests and backrests of
chairs. Reconstructing objects with part information not only
helps the interaction with the object but also the production
and animation for man-made CAD models.

To enable the part-level reconstruction from a single-view
image, we propose an end-to-end framework to reconstruct
the part-level 3D models from a single-view image, which
follows the encoder-decoder trends with the local feature en-
hancement. With the input of a single-view image, we first
adopt the typical image encoding network to extract the em-
bedded image-level features. To enhance the local feature rep-
resentation, we then propose a novel local awareness module
to get fine-grained local information from the embedding fea-
tures. The local features and global image-level features are
then fused to form the enhanced features for 3D generation.
With the fused image-encoding features, we adopt a 3D part-
level generator to reconstruct the holistic object. Our frame-
work can be trained end-to-end with the supervision of the
focal part reconstruction loss, which is beneficial to balance
the training of parts with different frequencies. To the best of
our knowledge, it is the first work to reconstruct the 3D model
from a single-view image with part-level information.

Our main contribution can be summarized as: 1) We pro-
pose a unified framework for solving the single-view 3D part-
level reconstruction problem. 2) We introduce a light-weight
local awareness module in the part reconstruction task, which
can effectively extract and enhance the local feature represen-
tations. 3) Experimental results show that the proposed ap-
proach is able to achieve state-of-the-art object-level recon-
struction results while simultaneously parsing the part-level
information.

2. THE APPROACH

2.1. Overview

In the section, we present the part-level 3D reconstruction
framework, which is composed of two modules, i.e., the Fea-
ture Enhancement Encoder and 3D Part Generator. Given
a single-view input image I, the image feature is first ex-
tracted with a common 2D image encoding backbone and
then fused with the enhanced feature from the Local Aware-
ness module. With the fused 2D-features together, we rear-
range them to a 3D embedding space and finally decoded to a
part-level 3D voxel model. The framework is trained end-to-
end with the supervision of the part-level voxel annotations
V = {Vpi , i = 1 . . . C}. C denotes the number of parts of
each category.

2.2. Feature Enhancement Encoding

To extract discriminative features from single-view images,
we resort to the commonly-used 2D Convolutional Neural
Network, which serves as backbone encoding in our frame-
work. In this paper, we adopt the VGG-16 backbone net-
work [25], which is pre-trained on the ImageNet dataset to
provide high-level information. With the extracted features,
we develop a feature enhancement encoding network to en-
hance the local representations and serve as prerequisites for
the 3D generation.

As illustrated in Fig. 2, we first extract the common
image-level features with the enhanced encoder (view in yel-
low). We use 3 × 3 convolutions and stride=2 to build a
lightweight feature extractor. The batchnorm [26] and ELU
functions are incorporated into different layers. The three en-
coding features are composed of 512, 512, 256 channels, re-
spectively. To enhance the local representation, we pass the
features of the second layer of 512 channels as common fea-
ture Fc and fed into the Local Awareness Module ξ (elabo-
rated in Section 2.3).

With the output feature of local awareness module and



Fig. 3. The illustration of Local Awareness Module. We use
sliding window to crop local features to form a patch list. An
adaptive feature weight is then calculated to rerank the lo-
cal features. The top-K discriminative features with high re-
sponses are selected to enhance the global feature.

global feature, we then fuse these two outputs with a feature
concatenation and 1× 1 convolution , which can be formally
represented as:

Fen = ξ(Fc)⊕ δ(W1(Fc) + b1), (1)

where W1 and b1 are learnable 3 × 3 convolutional kernels
and bias. δ and ⊕ denote the ELU activation function and
fuse operation, respectively. Then the fused features (B ×
C ′ × 8 × 8) are reshaped as (B × N × 2 × 2 × 2) to form
the 3D representation, where B is the batchsize, C ′ is the
corresponding channel size and N = C ′ × 8.

2.3. Local Awareness Module

In the reconstruction of 3D models, especially in part-level
occasions, fine-grained information is in high demand to con-
struct the details of 3D model. To enhance the local feature
representation and extract the most useful features, we present
an effective Local Awareness module (LAM), which adap-
tively extract the most useful fine-grained part features to re-
cover the 3D parts.

The LAM is embedded into the feature extractor and fed
with the features in deep CNNs. Fig. 3 is a schematic ab-
straction of LAM, which represents the deep features using
images for a better view. The LAM is first encoded with a
feature extractor Φenc and passed by a sliding-window con-
volution then stack the input features as a patch list. After
that these features are convoluted with an evaluator Φeval to
learn the adaptive weighting wi of ith patch. In this manner,
the most discriminative feature for 3D reconstruction will be

Table 1. The architecture of the Local Awareness Module
Module Kernel,Stride Output Shape

Input - - 512×26×26

Extractor

Conv 3,1 32×23×23
BN - 32×23×23

ReLU - 32×23×23
Conv 3,1 1×23×23
ReLU - 1×23×23
Sliding 4,1 1×(20×20)×4×4

Evaluator

Conv 3,1(pad 1) 32×23×23
BN - 32×23×23

ReLU - 32×23×23
Conv 4,1 1×(20×20)

Output Select K - 10×4×4
Bilinear - 10×8×8

attached with a higher response, e.g., the patches with rich
and characteristic local part details. We thus extract the Top-
K local features to form the final output ξ(Fc), which can be
represented as:

ξ(Fc) = Hk(Φenc(F
i
c); Φeval(F

i
c)), (2)

where Hk denotes the top-K selection function and we set
K = 10 empirically to balance the local and global features.
With the enhanced local selections, the final features are up-
sampled to be the same size as those of global features. The
detailed architecture is exhibited in Tab. 1. The LAM fea-
ture encourages the most useful local features in constructing
3D models, while drops the redundant features, e.g., the back-
ground region, which are less useful for reconstruction.

2.4. 3D Part Generator

The 3D part-level reconstruction aims to recover and disen-
tangle different parts in one single process. Unlike the com-
mon object-level reconstructions, part-level reconstruction is
a more challenging task, especially when the part is extremely
small. Keeping this in our mind, we propose the 3D part gen-
erator which is adaptively to recover the part-level informa-
tion.

With the rearranged 3D features from the encoding mod-
ule, we propose to decode the 3D information from the rich
features. The part decoder follows a step-wise operation with
3D deconvolutional kernels, which is illustrated in Fig. 2. We
upsample the features by stacking multiple deconvolutional
layers and 3D Batch Normalization layers. Finally, the output
model is generated with a resolution of 323. In the imple-
mentation, the kernel size and the stride of each deconvolu-
tion layer are set to 4 and 2 respectively, and the numbers
of channels are 256, 128, 64, 32 from low resolution to high
resolution.

Our training objective is to predict the part label while
predicting the over-all shape. Toward this end, the output of



Fig. 4. Visualized reconstruction results of baseline model and our final Base-LAM model.

the generative module is set to contain C channels on each
voxel position K = {k|k = 1, 2..., Nvoxel}, representing the
probability value of each part. C denotes the part number of
specific category and Nvoxel is the number of voxel. It can be
trained end-to-end using a multi-class cross-entropy loss:

Lce = −
∑
k∈K

log(ptk), (3)

where ptk denote the probability of part label T = {t|t =
0, 1, 2 . . . C} at position k.

As discussed above, the distribution of different parts are
unbalanced and small parts are usually omitted by large ones.
To solve this issue, we develop a 3D focal loss based on [27]
as our over-all training objective:

Lfoc = −
∑
k∈K

αt(1− ptk)γ log(ptk), (4)

αt = 1− Nt∑
i∈T Ni

, (5)

where αt and γ are hyperparameters to balance the data. We
set αt by inverse class frequency of each category on each
voxel in the training set and set γ = 2 in our experiments.

3. EXPERIMENTS

3.1. Experimental Settings

Dataset. To get the fine-grained part-level 3D annotations,
we conduct our experiments based on the large-scale Part-
Net dataset [24], which consists of 573,585 part instances and

Table 2. Dataset Statistics of PartNet subset in this paper.

Category Models part#1 part#2 part#3 part#4 part#5

Chair 6,323 84 6,298 2,875 6,323 -
Table 8,218 65 78 8,039 77 130

Display 928 928 778 - - -
Bag 126 126 - - - -

Knife 327 327 74 251 - -

26,671 3D models. We select five representative categories
from PartNet and the detailed statistics can be found in Tab.
2. We transform the point cloud annotations to voxel anno-
tations with the label of the corresponding part. For each
mesh model, we render 24 images from different horizon-
tal(set cameras every 45◦ from 0◦ to 360◦) and depression
angles (0◦, 30◦, 60◦) and set a constant distance 3 between
the model and camera by Blender. The resolution of each im-
age is 224 × 224 and the resolution of each voxel model is
32× 32× 32. The training set, validation set, and test set are
divided the same as the origin PartNet dataset.

Implementation details. To train a robust network, we
perform data argumentation for the dataset. We firstly ran-
domly change the brightness, contrast, and saturation of the
image and add random noise. Secondly, the image randomly
left-right flipped and permuted the RGB channels. At last,
we normalize the image on RGB channels with the mean and
standard deviation calculated from the whole dataset.

We train the model with the learning rate 0.02 and Adam
optimizer on a single Nvidia GTX-1080 GPU, and the batch



Table 3. Reconstruction Performance of mIoU on PartNet dataset. Part#i denotes the ith part of each category.

Method Category Part#1 Part#2 Part#3 Part#4 Part#5 Object

Base Model

Chair 19.62 34.70 20.69 26.95 - 31.09
Table 39.58 10.81 25.96 15.92 11.87 25.98

Display 48.44 34.58 - - - 47.99
Bag 41.68 - - - - 41.68

Knife 41.39 39.06 43.96 - - 46.12

Base-LAM

Chair 24.78 46.06 30.80 39.04 - 43.72
Table 44.72 17.10 32.86 28.79 15.24 32.88

Display 48.01 38.38 - - - 48.04
Bag 42.70 - - - - 42.70

Knife 47.88 43.97 51.57 - - 54.05

Table 4. Comparison on PartNet-Chair Dataset.

Method mIoU AP

3D-R2N2 [2] 27.72 42.03

Ours (Base) 31.09 50.85

Ours (Base-LAM) 43.72 62.11

size is set to 8. For each model, we train about 180k iterations
and the learning rate decay to 0.002 in the 100k iteration.

Baselines and evaluations. To evaluate our model and
the local features module in the dataset, we train a model
without the Local Awareness module as our baselines, which
follows the same setting as our final model.

In this paper, we choose the mean Intersection over Union
(mIoU) and Average Precision (AP) as evaluation criteria for
the generation with part label task, and use the mIoU to eval-
uate the generative quality.

3.2. Comparisons and Evaluations

Part-level reconstruction. We first conduct experiments on
the PartNet dataset [24] with 5 representative categories. We
first test the performance of our base-model, which is con-
structed without the Local Awareness enhancement. In Tab.
3, it can be found that the baseline model generates reliable
results in constructing the whole object, e.g., 47.99% mIoU
of Display. Note that the object-level mIoU is calculated by
gathering the disentangle parts as a holistic object. With the
local feature enhancement of LAM, our final model improves
a large margin on both object and part-level construction. For
example, in Tab. 3, the No.3 Part of table category improves
from 25.96% to 32.86%, which verifies the effectiveness of
our LAM feature enhancement.

The over-all visualized results can be found in Fig. 4. It

can be found that our final model (Base-LAM) generate better
local details and sharp boundaries, compared to the baseline
models. However, compared to the ground-truth label, our
generated model still contains some noise voxels, e.g., the
armrest of chairs in the second row. This indicates that the
3D part-level reconstruction is a challenging and meaningful
task, which motivates further researches and future work.

Object-level reconstruction. To evaluate the perfor-
mance on object-level reconstruction, we compare our model
with the state-of-the-art object reconstruction model 3D-
R2N2 [2] in PartNet-Chair subset. In Tab. 4, the results show
that our method improves the generative quality. Moreover,
it can be seen that our local awareness module is helpful to
improve the performance steadily, e.g.the AP index improves
from 50.85% to 62.11% compared with the base model.

4. CONCLUSIONS

In this paper, we make the first attempt to solve the part-level
reconstruction problem from a single-view image, which is
a still a less-explored and challenging task. The main prob-
lem of the object-level reconstruct method is that these meth-
ods miss the fine-grained local features in reconstruction and
usually fails to handle the detailed parts. In order to solve
this problem, we propose a unified framework with a local
feature enhanced representation. We also present an effec-
tive and light-weight Local Awareness Module with the se-
lective beneficial local features to promote the reconstruction
process. Experimental results show that our model generates
reliable part-level structures while achieving state-of-the-art
performance in object recovering.
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