model package

Submodules

model.BK module

model.make_mode_diffl module

model.make_model module

class model.make_model.Backbone(num_classes, cfg)

Bases: torch.nn.modules.module.Module

default use learning backbone network

set the configurations in /config

calling forward_gcn_cluster for forward function

other modfication

self.attention1 = GATConv(512,hidden,dropout=self.dropout,alpha=0.2,batch_size=8)

self.attention2 = GATConv(512, hidden, dropout=self.dropout, alpha=0.2,batch_size=8)

self.graphconv=GATConv(self.nheads*hidden,512,dropout=self.dropout,alpha=0.2,concat=False,batch_size=8)

forward(inputs, label=None, mode='train')

label is unused if self.cos_layer == 'no' Args:

inputs: input image batched label: labels batched mode: train or test

Returns:

classification probabilities batched.

forward_backbone_coattention(inputs, label=None)

cross attention fine-grained recognition, high-performance:88+ Args:

inputs: label:

Returns:

forward_gcn(inputs, label=None)

forward local connected GCNs

Args:

inputs: label:

Returns:

forward_gcn_cluster(inputs, label=None)
forward_pure(inputs, label=None)
forward_test(inputs, label=None)
load_param(trained_path)
reinit_param()
model.make_model.make_model(cfg, num_class)
model.make_model.weights_init_classifier(m)
model.make_model.weights_init_kaiming(m)

model.make_model_RGA module

model.make_model_vis module

Module contents