Gard-finegrained
Gard-finegrained
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
P
|
R
|
S
|
T
|
U
|
V
|
W
A
ArcFace (class in loss.arcface)
assertTensorClose() (model.sync_batchnorm.unittest.TorchTestCase method)
ATT (class in model.backbones.Attention)
attention_crop() (model.backbones.Attention.ATT method)
attention_crop_drop() (model.backbones.Attention.ATT method)
attention_drop() (model.backbones.Attention.ATT method)
AverageMeter (class in utils.meter)
B
Backbone (class in model.make_model)
backward() (model.GCN.sparseGCN.SpecialSpmmFunction static method)
BaseDataset (class in datasets.bases)
BaseImageDataset (class in datasets.bases)
BasicBlock (class in model.backbones.resnet)
BatchedGraphSAGE (class in model.GCN.Graphsage)
Bottleneck (class in model.backbones.resnet)
Bottleneck_old (class in model.backbones.resnet)
build_idx() (in module utils.adj_matrix)
buildnear() (in module utils.adj_matrix)
C
calc_iou() (model.backbones.Attention.ATT method)
calc_mask_iou() (model.backbones.Attention.ATT method)
CallbackContext (class in model.sync_batchnorm.replicate)
CenterLoss (class in loss.center_loss)
ClusterIdentitySampler (class in datasets.sampler)
compute() (utils.metrics.R1_mAP method)
compute_acc() (utils.metrics.R1_mAP method)
config
module
Config (class in config)
(class in config.configs)
config.configs
module
config.default
module
conv3x3() (in module model.backbones.resnet)
cosine_similarity() (in module utils.metrics)
CrossEntropyLabelSmooth (class in loss.softmax_loss)
CrossEntropyLabelSmooth2d (class in loss.softmax_loss)
CUB (class in datasets.CUB)
D
DataParallelWithCallback (class in model.sync_batchnorm.replicate)
datasets
module
datasets.bases
module
datasets.CUB
module
datasets.make_dataloader
module
datasets.NAbirds
module
datasets.preprocessing
module
datasets.sampler
module
datasets.UnifiedLoader
module
DefaultConfig (class in config.default)
do_inference() (in module processor.processor)
(in module processor.processor_bk)
do_train() (in module processor.processor)
(in module processor.processor_bk)
E
euclidean_dist() (in module loss.triplet_loss)
euclidean_distance() (in module utils.metrics)
eval_func() (in module utils.metrics)
execute_replication_callbacks() (in module model.sync_batchnorm.replicate)
expansion (model.backbones.resnet.BasicBlock attribute)
(model.backbones.resnet.Bottleneck attribute)
(model.backbones.resnet.Bottleneck_old attribute)
F
feature_crop() (model.backbones.Attention.ATT method)
forward() (loss.arcface.ArcFace method)
(loss.center_loss.CenterLoss method)
(loss.softmax_loss.CrossEntropyLabelSmooth method)
(loss.softmax_loss.CrossEntropyLabelSmooth2d method)
(loss.softmax_loss.LabelSmoothSoftmaxCE method)
(model.backbones.Attention.GatedTensorBankbuilter method)
(model.backbones.Attention.Tensorbuilter method)
(model.backbones.resnet.BasicBlock method)
(model.backbones.resnet.Bottleneck method)
(model.backbones.resnet.Bottleneck_old method)
(model.backbones.resnet.ResNet method)
(model.GCN.GCN.GCNResnet method)
(model.GCN.GCN.GraphAttentionLayer method)
(model.GCN.GCN.GraphConvolution method)
(model.GCN.Graphsage.BatchedGraphSAGE method)
(model.GCN.non_local.Non_local method)
(model.GCN.sparseGCN.SpecialSpmm method)
(model.GCN.sparseGCN.SpecialSpmmFunction static method)
(model.GCN.sparseGCN.SpGraphAttentionLayer method)
(model.make_model.Backbone method)
forward_backbone_coattention() (model.make_model.Backbone method)
forward_gcn() (model.make_model.Backbone method)
forward_gcn_cluster() (model.make_model.Backbone method)
forward_pure() (model.make_model.Backbone method)
forward_test() (model.make_model.Backbone method)
FutureResult (class in model.sync_batchnorm.comm)
G
GatedTensorBankbuilter (class in model.backbones.Attention)
GaussianMask (class in datasets.preprocessing)
GCNResnet (class in model.GCN.GCN)
gen_A() (in module model.GCN.GCN)
gen_adj() (in module utils.adj_matrix)
gen_adj2() (in module utils.adj_matrix)
gen_adj_coo() (in module utils.adj_matrix)
gen_adj_nearst() (in module utils.adj_matrix)
gen_adj_sim() (in module utils.adj_matrix)
gen_adj_sim_old() (in module utils.adj_matrix)
gen_adj_topk() (in module utils.adj_matrix)
get() (model.sync_batchnorm.comm.FutureResult method)
get_config_optim() (model.GCN.GCN.GCNResnet method)
get_imagedata_info() (datasets.bases.BaseDataset method)
get_imagedata_info_discrete() (datasets.bases.BaseDataset method)
get_layers() (model.backbones.resnet.ResNet method)
get_lr() (solver.lr_scheduler.WarmupMultiStepLR method)
get_sim_cross() (in module utils.adj_matrix)
get_sim_cross2() (in module utils.adj_matrix)
get_sim_local() (in module utils.adj_matrix)
GraphAttentionLayer (class in model.GCN.GCN)
GraphConvolution (class in model.GCN.GCN)
H
hard_example_mining() (in module loss.triplet_loss)
I
ImageDataset (class in datasets.bases)
L
label2colormap() (in module utils.logger)
LabelSmoothSoftmaxCE (class in loss.softmax_loss)
load_param() (model.backbones.resnet.ResNet method)
(model.make_model.Backbone method)
loss
module
loss.arcface
module
loss.center_loss
module
loss.link_loss
module
loss.make_loss
module
loss.softmax_loss
module
loss.triplet_loss
module
loss_aux() (in module loss.link_loss)
loss_normf() (in module loss.link_loss)
M
make_dataloader() (in module datasets.make_dataloader)
make_loss() (in module loss.make_loss)
make_model() (in module model.make_model)
make_optimizer() (in module solver.make_optimizer)
model
module
model.backbones
module
model.backbones.Attention
module
model.backbones.resnet
module
model.GCN
module
model.GCN.GCN
module
model.GCN.Graphsage
module
model.GCN.non_local
module
model.GCN.sparseGCN
module
model.make_model
module
model.sync_batchnorm
module
model.sync_batchnorm.batchnorm
module
model.sync_batchnorm.batchnorm_reimpl
module
model.sync_batchnorm.comm
module
model.sync_batchnorm.replicate
module
model.sync_batchnorm.unittest
module
module
config
config.configs
config.default
datasets
datasets.bases
datasets.CUB
datasets.make_dataloader
datasets.NAbirds
datasets.preprocessing
datasets.sampler
datasets.UnifiedLoader
loss
loss.arcface
loss.center_loss
loss.link_loss
loss.make_loss
loss.softmax_loss
loss.triplet_loss
model
model.backbones
model.backbones.Attention
model.backbones.resnet
model.GCN
model.GCN.GCN
model.GCN.Graphsage
model.GCN.non_local
model.GCN.sparseGCN
model.make_model
model.sync_batchnorm
model.sync_batchnorm.batchnorm
model.sync_batchnorm.batchnorm_reimpl
model.sync_batchnorm.comm
model.sync_batchnorm.replicate
model.sync_batchnorm.unittest
processor
processor.processor
processor.processor_bk
solver
solver.lr_scheduler
solver.make_optimizer
test
train
utils
utils.adj_matrix
utils.logger
utils.meter
utils.metrics
utils.reranking
vis
mul_dis() (in module utils.adj_matrix)
N
NAbirds (class in datasets.NAbirds)
NMS_crop() (model.backbones.Attention.ATT method)
Non_local (class in model.GCN.non_local)
norm_adj() (in module model.GCN.GCN)
norm_adj_batch() (in module model.GCN.GCN)
Norm_F() (in module utils.adj_matrix)
normalize() (in module loss.triplet_loss)
nr_slaves (model.sync_batchnorm.comm.SyncMaster property)
P
patch_replication_callback() (in module model.sync_batchnorm.replicate)
print_dataset_statistics() (datasets.bases.BaseDataset method)
(datasets.bases.BaseImageDataset method)
processor
module
processor.processor
module
processor.processor_bk
module
put() (model.sync_batchnorm.comm.FutureResult method)
R
R1_mAP (class in utils.metrics)
random_init() (model.backbones.resnet.ResNet method)
RandomErasing (class in datasets.preprocessing)
RandomIdentitySampler (class in datasets.sampler)
re_ranking() (in module utils.reranking)
read_image() (in module datasets.bases)
register_slave() (model.sync_batchnorm.comm.SyncMaster method)
reinit_param() (model.make_model.Backbone method)
replicate() (model.sync_batchnorm.replicate.DataParallelWithCallback method)
reset() (utils.meter.AverageMeter method)
(utils.metrics.R1_mAP method)
reset_parameters() (loss.arcface.ArcFace method)
(model.GCN.GCN.GraphAttentionLayer method)
(model.GCN.GCN.GraphConvolution method)
ResNet (class in model.backbones.resnet)
resnet50_crosslevel() (in module model.backbones.resnet)
run_master() (model.sync_batchnorm.comm.SyncMaster method)
run_slave() (model.sync_batchnorm.comm.SlavePipe method)
S
setup_logger() (in module utils.logger)
sim_dis() (in module utils.adj_matrix)
SlavePipe (class in model.sync_batchnorm.comm)
solver
module
solver.lr_scheduler
module
solver.make_optimizer
module
SpecialSpmm (class in model.GCN.sparseGCN)
SpecialSpmmFunction (class in model.GCN.sparseGCN)
SpGraphAttentionLayer (class in model.GCN.sparseGCN)
SynchronizedBatchNorm1d (class in model.sync_batchnorm.batchnorm)
SynchronizedBatchNorm2d (class in model.sync_batchnorm.batchnorm)
SynchronizedBatchNorm3d (class in model.sync_batchnorm.batchnorm)
SyncMaster (class in model.sync_batchnorm.comm)
T
Tensorbuilter (class in model.backbones.Attention)
test
module
TorchTestCase (class in model.sync_batchnorm.unittest)
train
module
train_collate_fn() (in module datasets.make_dataloader)
TripletLoss (class in loss.triplet_loss)
U
UnifiedLoader (class in datasets.UnifiedLoader)
update() (utils.meter.AverageMeter method)
(utils.metrics.R1_mAP method)
utils
module
utils.adj_matrix
module
utils.logger
module
utils.meter
module
utils.metrics
module
utils.reranking
module
V
val_collate_fn() (in module datasets.make_dataloader)
vis
module
W
WarmupMultiStepLR (class in solver.lr_scheduler)
weights_init_classifier() (in module model.make_model)
weights_init_kaiming() (in module model.make_model)